acir/native_types/expression/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
use crate::native_types::Witness;
use acir_field::AcirField;
use serde::{Deserialize, Serialize};
use std::cmp::Ordering;
mod operators;
mod ordering;

/// An expression representing a quadratic polynomial.
///
/// This struct is primarily used to express arithmetic relations between variables.
/// It includes multiplication terms, linear combinations, and a constant term.
///
/// # Addition polynomial
/// - Unlike standard plonk constraints with fixed wire assignments (wL, wR, wO),
///   we allow arbitrary fan-in and fan-out. This means we need a more flexible representation
///   and we need more than wL, wR, and wO.
/// - When looking at the quotient polynomial for the assert-zero opcode in standard plonk,
///   you can interpret the structure in two ways:
///   1. Fan-in 2 and fan-out 1
///   2. Fan-in 1 and fan-out 2
///
/// # Multiplication polynomial
/// - If we were allow the degree of the quotient polynomial to be arbitrary, then we will need a vector of wire values.
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub struct Expression<F> {
    /// Collection of multiplication terms.
    ///
    /// To avoid having to create intermediate variables pre-optimization
    /// We collect all of the multiplication terms in the assert-zero opcode
    /// A multiplication term is of the form q_M * wL * wR
    /// Hence this vector represents the following sum: q_M1 * wL1 * wR1 + q_M2 * wL2 * wR2 + .. +
    pub mul_terms: Vec<(F, Witness, Witness)>,

    /// Collection of linear terms in the expression.
    ///
    /// Each term follows the form: `q_L * w`, where `q_L` is a coefficient
    /// and `w` is a witness.
    pub linear_combinations: Vec<(F, Witness)>,
    /// A constant term in the expression
    // TODO: rename q_c to `constant` moreover q_X is not clear to those who
    // TODO: are not familiar with PLONK
    pub q_c: F,
}

impl<F: AcirField> Default for Expression<F> {
    fn default() -> Self {
        Expression { mul_terms: Vec::new(), linear_combinations: Vec::new(), q_c: F::zero() }
    }
}

impl<F: std::fmt::Display> std::fmt::Display for Expression<F> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "EXPR [ ")?;
        for i in &self.mul_terms {
            write!(f, "({}, _{}, _{}) ", i.0, i.1.witness_index(), i.2.witness_index())?;
        }
        for i in &self.linear_combinations {
            write!(f, "({}, _{}) ", i.0, i.1.witness_index())?;
        }
        write!(f, "{}", self.q_c)?;

        write!(f, " ]")
    }
}

impl<F> Expression<F> {
    /// Returns the number of multiplication terms
    pub fn num_mul_terms(&self) -> usize {
        self.mul_terms.len()
    }

    /// Adds a new linear term to the `Expression`.
    pub fn push_addition_term(&mut self, coefficient: F, variable: Witness) {
        self.linear_combinations.push((coefficient, variable));
    }

    /// Adds a new quadratic term to the `Expression`.
    pub fn push_multiplication_term(&mut self, coefficient: F, lhs: Witness, rhs: Witness) {
        self.mul_terms.push((coefficient, lhs, rhs));
    }

    /// Returns `true` if the expression represents a constant polynomial.
    ///
    /// Examples:
    /// -  f(x,y) = x + y would return false
    /// -  f(x,y) = xy would return false, the degree here is 2
    /// -  f(x,y) = 5 would return true, the degree is 0
    pub fn is_const(&self) -> bool {
        self.mul_terms.is_empty() && self.linear_combinations.is_empty()
    }

    /// Returns a `FieldElement` if the expression represents a constant polynomial.
    /// Otherwise returns `None`.
    ///
    /// Examples:
    /// - f(x,y) = x would return `None`
    /// - f(x,y) = x + 6 would return `None`
    /// - f(x,y) = 2*y + 6 would return `None`
    /// - f(x,y) = x + y would return `None`
    /// - f(x,y) = 5 would return `FieldElement(5)`
    pub fn to_const(&self) -> Option<&F> {
        self.is_const().then_some(&self.q_c)
    }

    /// Returns `true` if highest degree term in the expression is one or less.
    ///
    /// - `mul_term` in an expression contains degree-2 terms
    /// - `linear_combinations` contains degree-1 terms
    ///
    /// Hence, it is sufficient to check that there are no `mul_terms`
    ///
    /// Examples:
    /// -  f(x,y) = x + y would return true
    /// -  f(x,y) = xy would return false, the degree here is 2
    /// -  f(x,y) = 0 would return true, the degree is 0
    pub fn is_linear(&self) -> bool {
        self.mul_terms.is_empty()
    }

    /// Returns `true` if the expression can be seen as a degree-1 univariate polynomial
    ///
    /// - `mul_terms` in an expression can be univariate, however unless the coefficient
    ///   is zero, it is always degree-2.
    /// - `linear_combinations` contains the sum of degree-1 terms, these terms do not
    ///   need to contain the same variable and so it can be multivariate. However, we
    ///   have thus far only checked if `linear_combinations` contains one term, so this
    ///   method will return false, if the `Expression` has not been simplified.
    ///
    /// Hence, we check in the simplest case if an expression is a degree-1 univariate,
    /// by checking if it contains no `mul_terms` and it contains one `linear_combination` term.
    ///
    /// Examples:
    /// - f(x,y) = x would return true
    /// - f(x,y) = x + 6 would return true
    /// - f(x,y) = 2*y + 6 would return true
    /// - f(x,y) = x + y would return false
    /// - f(x,y) = x + x should return true, but we return false *** (we do not simplify)
    /// - f(x,y) = 5 would return false
    pub fn is_degree_one_univariate(&self) -> bool {
        self.is_linear() && self.linear_combinations.len() == 1
    }

    /// Sorts opcode in a deterministic order
    /// XXX: We can probably make this more efficient by sorting on each phase. We only care if it is deterministic
    pub fn sort(&mut self) {
        self.mul_terms.sort_by(|a, b| a.1.cmp(&b.1).then(a.2.cmp(&b.2)));
        self.linear_combinations.sort_by(|a, b| a.1.cmp(&b.1));
    }
}

impl<F: AcirField> Expression<F> {
    pub fn from_field(q_c: F) -> Self {
        Self { q_c, ..Default::default() }
    }

    pub fn zero() -> Self {
        Self::default()
    }

    pub fn is_zero(&self) -> bool {
        *self == Self::zero()
    }

    pub fn one() -> Self {
        Self::from_field(F::one())
    }

    /// Returns a `Witness` if the `Expression` can be represented as a degree-1
    /// univariate polynomial. Otherwise returns `None`.
    ///
    /// Note that `Witness` is only capable of expressing polynomials of the form
    /// f(x) = x and not polynomials of the form f(x) = mx+c , so this method has
    /// extra checks to ensure that m=1 and c=0
    pub fn to_witness(&self) -> Option<Witness> {
        if self.is_degree_one_univariate() {
            // If we get here, we know that our expression is of the form `f(x) = mx+c`
            // We want to now restrict ourselves to expressions of the form f(x) = x
            // ie where the constant term is 0 and the coefficient in front of the variable is
            // one.
            let (coefficient, variable) = self.linear_combinations[0];
            let constant = self.q_c;

            if coefficient.is_one() && constant.is_zero() {
                return Some(variable);
            }
        }
        None
    }

    /// Returns `self + k*b`
    pub fn add_mul(&self, k: F, b: &Self) -> Self {
        if k.is_zero() {
            return self.clone();
        } else if self.is_const() {
            let kb = b * k;
            return kb + self.q_c;
        } else if b.is_const() {
            return self.clone() + (k * b.q_c);
        }

        let mut mul_terms: Vec<(F, Witness, Witness)> =
            Vec::with_capacity(self.mul_terms.len() + b.mul_terms.len());
        let mut linear_combinations: Vec<(F, Witness)> =
            Vec::with_capacity(self.linear_combinations.len() + b.linear_combinations.len());
        let q_c = self.q_c + k * b.q_c;

        //linear combinations
        let mut i1 = 0; //a
        let mut i2 = 0; //b
        while i1 < self.linear_combinations.len() && i2 < b.linear_combinations.len() {
            let (a_c, a_w) = self.linear_combinations[i1];
            let (b_c, b_w) = b.linear_combinations[i2];

            let (coeff, witness) = match a_w.cmp(&b_w) {
                Ordering::Greater => {
                    i2 += 1;
                    (k * b_c, b_w)
                }
                Ordering::Less => {
                    i1 += 1;
                    (a_c, a_w)
                }
                Ordering::Equal => {
                    // Here we're taking both witnesses as the witness indices are equal.
                    // We then advance both `i1` and `i2`.
                    i1 += 1;
                    i2 += 1;
                    (a_c + k * b_c, a_w)
                }
            };

            if !coeff.is_zero() {
                linear_combinations.push((coeff, witness));
            }
        }

        // Finally process all the remaining terms which we didn't handle in the above loop.
        while i1 < self.linear_combinations.len() {
            linear_combinations.push(self.linear_combinations[i1]);
            i1 += 1;
        }
        while i2 < b.linear_combinations.len() {
            let (b_c, b_w) = b.linear_combinations[i2];
            let coeff = b_c * k;
            if !coeff.is_zero() {
                linear_combinations.push((coeff, b_w));
            }
            i2 += 1;
        }

        //mul terms

        i1 = 0; //a
        i2 = 0; //b
        while i1 < self.mul_terms.len() && i2 < b.mul_terms.len() {
            let (a_c, a_wl, a_wr) = self.mul_terms[i1];
            let (b_c, b_wl, b_wr) = b.mul_terms[i2];

            let (coeff, wl, wr) = match (a_wl, a_wr).cmp(&(b_wl, b_wr)) {
                Ordering::Greater => {
                    i2 += 1;
                    (k * b_c, b_wl, b_wr)
                }
                Ordering::Less => {
                    i1 += 1;
                    (a_c, a_wl, a_wr)
                }
                Ordering::Equal => {
                    // Here we're taking both terms as the witness indices are equal.
                    // We then advance both `i1` and `i2`.
                    i2 += 1;
                    i1 += 1;
                    (a_c + k * b_c, a_wl, a_wr)
                }
            };

            if !coeff.is_zero() {
                mul_terms.push((coeff, wl, wr));
            }
        }

        // Finally process all the remaining terms which we didn't handle in the above loop.
        while i1 < self.mul_terms.len() {
            mul_terms.push(self.mul_terms[i1]);
            i1 += 1;
        }
        while i2 < b.mul_terms.len() {
            let (b_c, b_wl, b_wr) = b.mul_terms[i2];
            let coeff = b_c * k;
            if coeff != F::zero() {
                mul_terms.push((coeff, b_wl, b_wr));
            }
            i2 += 1;
        }

        Expression { mul_terms, linear_combinations, q_c }
    }

    /// Determine the width of this expression.
    /// The width meaning the number of unique witnesses needed for this expression.
    pub fn width(&self) -> usize {
        let mut width = 0;

        for mul_term in &self.mul_terms {
            // The coefficient should be non-zero, as this method is ran after the compiler removes all zero coefficient terms
            assert_ne!(mul_term.0, F::zero());

            let mut found_x = false;
            let mut found_y = false;

            for term in self.linear_combinations.iter() {
                let witness = &term.1;
                let x = &mul_term.1;
                let y = &mul_term.2;
                if witness == x {
                    found_x = true;
                };
                if witness == y {
                    found_y = true;
                };
                if found_x & found_y {
                    break;
                }
            }

            // If the multiplication is a squaring then we must assign the two witnesses to separate wires and so we
            // can never get a zero contribution to the width.
            let multiplication_is_squaring = mul_term.1 == mul_term.2;

            let mul_term_width_contribution = if !multiplication_is_squaring && (found_x & found_y)
            {
                // Both witnesses involved in the multiplication exist elsewhere in the expression.
                // They both do not contribute to the width of the expression as this would be double-counting
                // due to their appearance in the linear terms.
                0
            } else if found_x || found_y {
                // One of the witnesses involved in the multiplication exists elsewhere in the expression.
                // The multiplication then only contributes 1 new witness to the width.
                1
            } else {
                // Worst case scenario, the multiplication is using completely unique witnesses so has a contribution of 2.
                2
            };

            width += mul_term_width_contribution;
        }

        width += self.linear_combinations.len();

        width
    }
}

impl<F: AcirField> From<F> for Expression<F> {
    fn from(constant: F) -> Self {
        Expression { q_c: constant, linear_combinations: Vec::new(), mul_terms: Vec::new() }
    }
}

impl<F: AcirField> From<Witness> for Expression<F> {
    /// Creates an Expression from a Witness.
    ///
    /// This is infallible since an `Expression` is
    /// a multi-variate polynomial and a `Witness`
    /// can be seen as a univariate polynomial
    fn from(wit: Witness) -> Self {
        Expression {
            q_c: F::zero(),
            linear_combinations: vec![(F::one(), wit)],
            mul_terms: Vec::new(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use acir_field::{AcirField, FieldElement};

    #[test]
    fn add_mul_smoke_test() {
        let a = Expression {
            mul_terms: vec![(FieldElement::from(2u128), Witness(1), Witness(2))],
            ..Default::default()
        };

        let k = FieldElement::from(10u128);

        let b = Expression {
            mul_terms: vec![
                (FieldElement::from(3u128), Witness(0), Witness(2)),
                (FieldElement::from(3u128), Witness(1), Witness(2)),
                (FieldElement::from(4u128), Witness(4), Witness(5)),
            ],
            linear_combinations: vec![(FieldElement::from(4u128), Witness(4))],
            q_c: FieldElement::one(),
        };

        let result = a.add_mul(k, &b);
        assert_eq!(
            result,
            Expression {
                mul_terms: vec![
                    (FieldElement::from(30u128), Witness(0), Witness(2)),
                    (FieldElement::from(32u128), Witness(1), Witness(2)),
                    (FieldElement::from(40u128), Witness(4), Witness(5)),
                ],
                linear_combinations: vec![(FieldElement::from(40u128), Witness(4))],
                q_c: FieldElement::from(10u128)
            }
        );
    }
}