acir/serialization.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
//! Serialization formats we consider using for the bytecode and the witness stack.
use crate::proto::convert::ProtoSchema;
use acir_field::AcirField;
use noir_protobuf::ProtoCodec;
use num_enum::{IntoPrimitive, TryFromPrimitive};
use serde::{Deserialize, Serialize};
use std::str::FromStr;
use strum_macros::EnumString;
const FORMAT_ENV_VAR: &str = "NOIR_SERIALIZATION_FORMAT";
/// A marker byte for the serialization format.
#[derive(Debug, Clone, Copy, IntoPrimitive, TryFromPrimitive, EnumString, PartialEq, Eq)]
#[strum(serialize_all = "kebab-case")]
#[repr(u8)]
pub(crate) enum Format {
/// Bincode without format marker.
/// This does not actually appear in the data.
BincodeLegacy = 0,
/// Bincode with format marker.
Bincode = 1,
/// Msgpack with named structs.
Msgpack = 2,
/// Msgpack with tuple structs.
MsgpackCompact = 3,
Protobuf = 4,
}
impl Format {
/// Look for a `NOIR_SERIALIZATION_FORMAT` env var to turn on formatted serialization.
///
/// The reason we use an env var is because:
/// 1. It has to be picked up in methods like `Program::serialize_program_base64` where no config is available.
/// 2. At the moment this is mostly for testing, to be able to commit code that _can_ produce different formats,
/// but only activate it once a version of `bb` that can handle it is released.
pub(crate) fn from_env() -> Result<Option<Self>, String> {
let Ok(format) = std::env::var(FORMAT_ENV_VAR) else {
return Ok(None);
};
Self::from_str(&format)
.map(Some)
.map_err(|e| format!("unknown format '{format}' in {FORMAT_ENV_VAR}: {e}"))
}
}
/// Serialize a value using `bincode`, based on `serde`.
///
/// This format is compact, but provides no backwards compatibility.
pub(crate) fn bincode_serialize<T: Serialize>(value: &T) -> std::io::Result<Vec<u8>> {
bincode::serde::encode_to_vec(value, bincode::config::legacy()).map_err(std::io::Error::other)
}
/// Deserialize a value using `bincode`, based on `serde`.
pub(crate) fn bincode_deserialize<T: for<'a> Deserialize<'a>>(buf: &[u8]) -> std::io::Result<T> {
bincode::serde::borrow_decode_from_slice(buf, bincode::config::legacy())
.map(|(result, _)| result)
.map_err(|e| std::io::Error::new(std::io::ErrorKind::InvalidInput, e))
}
/// Serialize a value using MessagePack, based on `serde`.
///
/// This format is compact can be configured to be backwards compatible.
///
/// When `compact` is `true`, it serializes structs as tuples, otherwise it writes their field names.
/// Enums are always serialized with their variant names (despite what the library comments say, and it's not configurable).
///
/// Set `compact` to `true` if we want old readers to fail when a new field is added to a struct,
/// that is, if we think that ignoring a new field could lead to incorrect behavior.
#[allow(dead_code)]
pub(crate) fn msgpack_serialize<T: Serialize>(
value: &T,
compact: bool,
) -> std::io::Result<Vec<u8>> {
if compact {
// The default behavior encodes struct fields as
rmp_serde::to_vec(value).map_err(std::io::Error::other)
} else {
// Or this to be able to configure the serialization:
// * `Serializer::with_struct_map` encodes structs with field names instead of positions, which is backwards compatible when new fields are added, or optional fields removed.
// * consider using `Serializer::with_bytes` to force buffers to be compact, or use `serde_bytes` on the field.
// * enums have their name encoded in `Serializer::serialize_newtype_variant`, but originally it was done by index instead
rmp_serde::to_vec_named(value).map_err(std::io::Error::other)
}
}
/// Deserialize a value using MessagePack, based on `serde`.
#[allow(dead_code)]
pub(crate) fn msgpack_deserialize<T: for<'a> Deserialize<'a>>(buf: &[u8]) -> std::io::Result<T> {
rmp_serde::from_slice(buf).map_err(|e| std::io::Error::new(std::io::ErrorKind::InvalidInput, e))
}
/// Serialize a value using `protobuf`.
///
/// This format is forwards and backwards compatible, but requires code generation based on `.proto` schemas.
#[allow(dead_code)]
pub(crate) fn proto_serialize<F, T, R>(value: &T) -> Vec<u8>
where
F: AcirField,
R: prost::Message,
ProtoSchema<F>: ProtoCodec<T, R>,
{
ProtoSchema::<F>::serialize_to_vec(value)
}
/// Deserialize a value using `protobuf`.
#[allow(dead_code)]
pub(crate) fn proto_deserialize<F, T, R>(buf: &[u8]) -> std::io::Result<T>
where
F: AcirField,
R: prost::Message + Default,
ProtoSchema<F>: ProtoCodec<T, R>,
{
ProtoSchema::<F>::deserialize_from_slice(buf)
.map_err(|e| std::io::Error::new(std::io::ErrorKind::InvalidInput, e))
}
/// Deserialize any of the supported formats. Try go guess the format based on the first byte,
/// but fall back to the legacy `bincode` format if anything fails.
pub(crate) fn deserialize_any_format<F, T, R>(buf: &[u8]) -> std::io::Result<T>
where
T: for<'a> Deserialize<'a>,
F: AcirField,
R: prost::Message + Default,
ProtoSchema<F>: ProtoCodec<T, R>,
{
// Unfortunately as long as we have to deal with legacy bincode format we might be able
// to deserialize any other format as pure coincidence, when it was just legacy data.
// Since `bincode` is the least backwards compatible, let's try that first.
let bincode_result = bincode_deserialize(buf);
if bincode_result.is_err() && !buf.is_empty() {
if let Ok(format) = Format::try_from(buf[0]) {
match format {
Format::BincodeLegacy => {
// This is just a coincidence, as this format does not appear in the data,
// but we know it's none of the other formats.
}
Format::Bincode => {
if let Ok(value) = bincode_deserialize(&buf[1..]) {
return Ok(value);
}
}
Format::Msgpack | Format::MsgpackCompact => {
if let Ok(value) = msgpack_deserialize(&buf[1..]) {
return Ok(value);
}
}
Format::Protobuf => {
if let Ok(value) = proto_deserialize(&buf[1..]) {
return Ok(value);
}
}
}
}
}
bincode_result
}
pub(crate) fn serialize_with_format<F, T, R>(value: &T, format: Format) -> std::io::Result<Vec<u8>>
where
F: AcirField,
T: Serialize,
R: prost::Message,
ProtoSchema<F>: ProtoCodec<T, R>,
{
// It would be more efficient to skip having to create a vector here, and use a std::io::Writer instead.
let mut buf = match format {
Format::BincodeLegacy => return bincode_serialize(value),
Format::Bincode => bincode_serialize(value)?,
Format::Protobuf => proto_serialize(value),
Format::Msgpack => msgpack_serialize(value, false)?,
Format::MsgpackCompact => msgpack_serialize(value, true)?,
};
let mut res = vec![format.into()];
res.append(&mut buf);
Ok(res)
}
pub(crate) fn serialize_with_format_from_env<F, T, R>(value: &T) -> std::io::Result<Vec<u8>>
where
F: AcirField,
T: Serialize,
R: prost::Message,
ProtoSchema<F>: ProtoCodec<T, R>,
{
match Format::from_env() {
Ok(Some(format)) => {
// This will need a new `bb` even if it's the bincode format, because of the format byte.
serialize_with_format(value, format)
}
Ok(None) => {
// This is how the currently released `bb` expects the data.
bincode_serialize(value)
}
Err(e) => Err(std::io::Error::other(e)),
}
}
#[cfg(test)]
mod tests {
use acir_field::FieldElement;
use brillig::{BitSize, HeapArray, IntegerBitSize, ValueOrArray};
use std::str::FromStr;
use crate::{
circuit::{Opcode, brillig::BrilligFunctionId},
native_types::Witness,
serialization::{Format, msgpack_deserialize, msgpack_serialize},
};
mod version1 {
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq)]
pub(crate) enum Foo {
Case0 { d: u32 },
Case1 { a: u64, b: bool },
Case2 { a: i32 },
Case3 { a: bool },
Case4 { a: Box<Foo> },
Case5 { a: u32, b: Option<u32> },
}
}
mod version2 {
use serde::{Deserialize, Serialize};
// Removed variants and fields
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq)]
pub(crate) enum Foo {
// removed
// Case0 { .. },
// unchanged, but position shifted
Case1 {
a: u64,
b: bool,
},
// new prefix field
Case2 {
b: String,
a: i32,
},
// new suffix field
Case3 {
a: bool,
b: String,
},
// reordered, optional removed
Case5 {
a: u32,
},
// reordered, field renamed
Case4 {
#[serde(rename = "a")]
c: Box<Foo>,
},
// new
Case6 {
b: i64,
},
// new, now more variants than before
Case7 {
c: bool,
},
}
}
/// Test that the `msgpack_serialize(compact=false)` is backwards compatible:
/// * removal of an enum variant (e.g. opcode no longer in use)
/// * struct fields added: the old reader ignores new fields, but this could potentially lead to invalid behavior
/// * struct fields reordered: trivial because fields are named
/// * struct fields renamed: this would work with positional encoding, or using `#[serde(rename)]`
#[test]
fn msgpack_serialize_backwards_compatibility() {
let cases = vec![
(version2::Foo::Case1 { b: true, a: 1 }, version1::Foo::Case1 { b: true, a: 1 }),
(version2::Foo::Case2 { b: "prefix".into(), a: 2 }, version1::Foo::Case2 { a: 2 }),
(
version2::Foo::Case3 { a: true, b: "suffix".into() },
version1::Foo::Case3 { a: true },
),
(
version2::Foo::Case4 { c: Box::new(version2::Foo::Case1 { a: 4, b: false }) },
version1::Foo::Case4 { a: Box::new(version1::Foo::Case1 { a: 4, b: false }) },
),
(version2::Foo::Case5 { a: 5 }, version1::Foo::Case5 { a: 5, b: None }),
];
for (i, (v2, v1)) in cases.into_iter().enumerate() {
let bz = msgpack_serialize(&v2, false).unwrap();
let v = msgpack_deserialize::<version1::Foo>(&bz)
.unwrap_or_else(|e| panic!("case {i} failed: {e}"));
assert_eq!(v, v1);
}
}
/// Test that the `msgpack_serialize(compact=true)` is backwards compatible for a subset of the cases:
/// * removal of an enum variant (e.g. opcode no longer in use)
/// * struct fields renamed: accepted because position based
/// * adding unused enum variants
///
/// And rejects cases which could lead to unintended behavior:
/// * struct fields added: rejected because the number of fields change
/// * struct fields reordered: rejected because fields are position based
#[test]
fn msgpack_serialize_compact_backwards_compatibility() {
let cases = vec![
(version2::Foo::Case1 { b: true, a: 1 }, version1::Foo::Case1 { b: true, a: 1 }, None),
(
version2::Foo::Case2 { b: "prefix".into(), a: 2 },
version1::Foo::Case2 { a: 2 },
Some("wrong msgpack marker FixStr(6)"),
),
(
version2::Foo::Case3 { a: true, b: "suffix".into() },
version1::Foo::Case3 { a: true },
Some("array had incorrect length, expected 1"),
),
(
version2::Foo::Case4 { c: Box::new(version2::Foo::Case1 { a: 4, b: false }) },
version1::Foo::Case4 { a: Box::new(version1::Foo::Case1 { a: 4, b: false }) },
None,
),
(
version2::Foo::Case5 { a: 5 },
version1::Foo::Case5 { a: 5, b: None },
Some("invalid length 1, expected struct variant Foo::Case5 with 2 elements"),
),
];
for (i, (v2, v1, ex)) in cases.into_iter().enumerate() {
let bz = msgpack_serialize(&v2, true).unwrap();
let res = msgpack_deserialize::<version1::Foo>(&bz);
match (res, ex) {
(Ok(v), None) => {
assert_eq!(v, v1);
}
(Ok(_), Some(ex)) => panic!("case {i} expected to fail with {ex}"),
(Err(e), None) => panic!("case {i} expected to pass; got {e}"),
(Err(e), Some(ex)) => {
let e = e.to_string();
if !e.contains(ex) {
panic!("case {i} error expected to contain {ex}; got {e}")
}
}
}
}
}
/// Test that an enum where each member wraps a struct serializes as a single item map keyed by the type.
#[test]
fn msgpack_repr_enum_of_structs() {
use rmpv::Value; // cSpell:disable-line
let value = ValueOrArray::HeapArray(HeapArray {
pointer: brillig::MemoryAddress::Relative(0),
size: 3,
});
let bz = msgpack_serialize(&value, false).unwrap();
let msg = rmpv::decode::read_value::<&[u8]>(&mut bz.as_ref()).unwrap(); // cSpell:disable-line
let Value::Map(fields) = msg else {
panic!("expected Map: {msg:?}");
};
assert_eq!(fields.len(), 1);
let Value::String(key) = &fields[0].0 else {
panic!("expected String key: {fields:?}");
};
assert_eq!(key.as_str(), Some("HeapArray"));
}
/// Test that an enum of unit structs serializes as a string.
#[test]
fn msgpack_repr_enum_of_unit_structs() {
let value = IntegerBitSize::U1;
let bz = msgpack_serialize(&value, false).unwrap();
let msg = rmpv::decode::read_value::<&[u8]>(&mut bz.as_ref()).unwrap(); // cSpell:disable-line
assert_eq!(msg.as_str(), Some("U1"));
}
/// Test how an enum where some members are unit structs serializes.
#[test]
fn msgpack_repr_enum_of_mixed() {
let value = vec![BitSize::Field, BitSize::Integer(IntegerBitSize::U64)];
let bz = msgpack_serialize(&value, false).unwrap();
let msg = rmpv::decode::read_value::<&[u8]>(&mut bz.as_ref()).unwrap(); // cSpell:disable-line
assert_eq!(format!("{msg}"), r#"["Field", {"Integer": "U64"}]"#);
}
/// Test that a newtype, just wrapping a value, is serialized as the underlying value.
#[test]
fn msgpack_repr_newtype() {
use rmpv::Value; // cSpell:disable-line
let value = Witness(1);
let bz = msgpack_serialize(&value, false).unwrap();
let msg = rmpv::decode::read_value::<&[u8]>(&mut bz.as_ref()).unwrap(); // cSpell:disable-line
assert!(matches!(msg, Value::Integer(_)));
}
/// Test to show that optional fields, when empty, are still in the map.
/// The Rust library handles deserializing them as `None` if they are not present,
/// but the `msgpack-c` library does not.
#[test]
fn msgpack_optional() {
use rmpv::Value; // cSpell:disable-line
let value: Opcode<FieldElement> = Opcode::BrilligCall {
id: BrilligFunctionId(1),
inputs: Vec::new(),
outputs: Vec::new(),
predicate: None,
};
let bz = msgpack_serialize(&value, false).unwrap();
let msg = rmpv::decode::read_value::<&[u8]>(&mut bz.as_ref()).unwrap(); // cSpell:disable-line
let fields = msg.as_map().expect("enum is a map");
let fields = &fields.first().expect("enum is non-empty").1;
let fields = fields.as_map().expect("fields are map");
let (k, v) = fields.last().expect("fields are not empty");
assert_eq!(k.as_str().expect("names are str"), "predicate");
assert!(matches!(v, Value::Nil));
}
#[test]
fn format_from_str() {
assert_eq!(Format::from_str("msgpack-compact").unwrap(), Format::MsgpackCompact);
}
}