acir_field/generic_ark.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
use num_bigint::BigUint;
/// This trait is extremely unstable and WILL have breaking changes.
pub trait AcirField:
Sized
+ std::fmt::Display
+ std::fmt::Debug
+ Default
+ Clone
+ Copy
+ std::ops::Neg<Output = Self>
+ std::ops::Add<Self, Output = Self>
+ std::ops::Sub<Self, Output = Self>
+ std::ops::Mul<Self, Output = Self>
+ std::ops::Div<Self, Output = Self>
+ std::ops::AddAssign<Self>
+ std::ops::SubAssign<Self>
+ PartialOrd
+ From<usize>
+ From<u128>
// + From<u64>
+ From<u32>
// + From<u16>
// + From<u8>
+ From<bool>
+ std::hash::Hash
+ Eq
+ 'static
{
fn one() -> Self;
fn zero() -> Self;
fn is_zero(&self) -> bool;
fn is_one(&self) -> bool;
fn pow(&self, exponent: &Self) -> Self;
/// Maximum number of bits needed to represent a field element
/// This is not the amount of bits being used to represent a field element
/// Example, you only need 254 bits to represent a field element in BN256
/// But the representation uses 256 bits, so the top two bits are always zero
/// This method would return 254
fn max_num_bits() -> u32;
/// Maximum numbers of bytes needed to represent a field element
/// We are not guaranteed that the number of bits being used to represent a field element
/// will always be divisible by 8. If the case that it is not, we add one to the max number of bytes
/// For example, a max bit size of 254 would give a max byte size of 32.
fn max_num_bytes() -> u32;
fn modulus() -> BigUint;
/// This is the number of bits required to represent this specific field element
fn num_bits(&self) -> u32;
fn to_u128(self) -> u128;
fn try_into_u128(self) -> Option<u128>;
fn to_i128(self) -> i128;
fn try_into_i128(self) -> Option<i128>;
fn try_to_u64(&self) -> Option<u64>;
fn try_to_u32(&self) -> Option<u32>;
/// Computes the inverse or returns zero if the inverse does not exist
/// Before using this FieldElement, please ensure that this behavior is necessary
fn inverse(&self) -> Self;
fn to_hex(self) -> String;
fn from_hex(hex_str: &str) -> Option<Self>;
fn to_be_bytes(self) -> Vec<u8>;
/// Converts bytes into a FieldElement and applies a reduction if needed.
fn from_be_bytes_reduce(bytes: &[u8]) -> Self;
/// Converts bytes in little-endian order into a FieldElement and applies a reduction if needed.
fn from_le_bytes_reduce(bytes: &[u8]) -> Self;
/// Converts the field element to a vector of bytes in little-endian order
fn to_le_bytes(self) -> Vec<u8>;
/// Returns the closest number of bytes to the bits specified
/// This method truncates
fn fetch_nearest_bytes(&self, num_bits: usize) -> Vec<u8>;
}
/// Define a _newtype_ wrapper around an `AcirField` by implementing all the
/// boilerplate for forwarding the field operations.
///
/// This allows the wrapper to implement traits such as `Arbitrary`, and then
/// be used by code that is generic in `F: AcirField`.
///
/// # Example
/// ```ignore
/// field_wrapper!(TestField, FieldElement);
/// ```
#[macro_export]
macro_rules! field_wrapper {
($wrapper:ident, $field:ident) => {
#[derive(
Clone,
Debug,
PartialEq,
Eq,
Hash,
PartialOrd,
Copy,
Default,
serde::Serialize,
serde::Deserialize,
)]
struct $wrapper(pub $field);
impl $crate::AcirField for $wrapper {
fn one() -> Self {
Self($field::one())
}
fn zero() -> Self {
Self($field::zero())
}
fn is_zero(&self) -> bool {
self.0.is_zero()
}
fn is_one(&self) -> bool {
self.0.is_one()
}
fn pow(&self, exponent: &Self) -> Self {
Self(self.0.pow(&exponent.0))
}
fn max_num_bits() -> u32 {
$field::max_num_bits()
}
fn max_num_bytes() -> u32 {
$field::max_num_bytes()
}
fn modulus() -> num_bigint::BigUint {
$field::modulus()
}
fn num_bits(&self) -> u32 {
self.0.num_bits()
}
fn to_u128(self) -> u128 {
self.0.to_u128()
}
fn try_into_u128(self) -> Option<u128> {
self.0.try_into_u128()
}
fn try_into_i128(self) -> Option<i128> {
self.0.try_into_i128()
}
fn to_i128(self) -> i128 {
self.0.to_i128()
}
fn try_to_u64(&self) -> Option<u64> {
self.0.try_to_u64()
}
fn try_to_u32(&self) -> Option<u32> {
self.0.try_to_u32()
}
fn inverse(&self) -> Self {
Self(self.0.inverse())
}
fn to_hex(self) -> String {
self.0.to_hex()
}
fn from_hex(hex_str: &str) -> Option<Self> {
$field::from_hex(hex_str).map(Self)
}
fn to_be_bytes(self) -> Vec<u8> {
self.0.to_be_bytes()
}
fn from_be_bytes_reduce(bytes: &[u8]) -> Self {
Self($field::from_be_bytes_reduce(bytes))
}
fn from_le_bytes_reduce(bytes: &[u8]) -> Self {
Self($field::from_le_bytes_reduce(bytes))
}
fn to_le_bytes(self) -> Vec<u8> {
self.0.to_le_bytes()
}
fn fetch_nearest_bytes(&self, num_bits: usize) -> Vec<u8> {
self.0.fetch_nearest_bytes(num_bits)
}
}
impl From<bool> for $wrapper {
fn from(value: bool) -> Self {
Self($field::from(value))
}
}
impl From<u128> for $wrapper {
fn from(value: u128) -> Self {
Self($field::from(value))
}
}
impl From<u32> for $wrapper {
fn from(value: u32) -> Self {
Self($field::from(value))
}
}
impl From<usize> for $wrapper {
fn from(value: usize) -> Self {
Self($field::from(value))
}
}
impl std::ops::SubAssign<$wrapper> for $wrapper {
fn sub_assign(&mut self, rhs: $wrapper) {
self.0.sub_assign(rhs.0);
}
}
impl std::ops::AddAssign<$wrapper> for $wrapper {
fn add_assign(&mut self, rhs: $wrapper) {
self.0.add_assign(rhs.0);
}
}
impl std::ops::Add<$wrapper> for $wrapper {
type Output = Self;
fn add(self, rhs: $wrapper) -> Self::Output {
Self(self.0.add(rhs.0))
}
}
impl std::ops::Sub<$wrapper> for $wrapper {
type Output = Self;
fn sub(self, rhs: $wrapper) -> Self::Output {
Self(self.0.sub(rhs.0))
}
}
impl std::ops::Mul<$wrapper> for $wrapper {
type Output = Self;
fn mul(self, rhs: $wrapper) -> Self::Output {
Self(self.0.mul(rhs.0))
}
}
impl std::ops::Div<$wrapper> for $wrapper {
type Output = Self;
fn div(self, rhs: $wrapper) -> Self::Output {
Self(self.0.div(rhs.0))
}
}
impl std::ops::Neg for $wrapper {
type Output = Self;
fn neg(self) -> Self::Output {
Self(self.0.neg())
}
}
impl std::fmt::Display for $wrapper {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
};
}