acvm/compiler/optimizers/
redundant_range.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
//! The redundant range constraint optimization pass aims to remove any [BlackBoxFunc::Range] opcodes
//! which doesn't result in additional restrictions on the value of witnesses.
//!
//! Suppose we had the following pseudo-code:
//!
//! ```noir
//! let z1 = x as u16;
//! let z2 = x as u32;
//! ```
//! It is clear that if `x` fits inside of a 16-bit integer,
//! it must also fit inside of a 32-bit integer.
//!
//! The generated ACIR may produce two range opcodes however;
//! - One for the 16 bit range constraint of `x`
//! - One for the 32-bit range constraint of `x`
//!
//! This optimization pass will keep the 16-bit range constraint
//! and remove the 32-bit range constraint opcode.
//!
//! # Implicit range constraints
//!
//! We also consider implicit range constraints on witnesses - constraints other than [BlackBoxFunc::Range]
//! which limit the size of a witness.
//!
//! ## Constant assignments
//!
//! The most obvious of these are when a witness is constrained to be equal to a constant value.
//!
//! ```noir
//! let z1 = x as u16;
//! assert_eq(z1, 100);
//! ```
//!
//! We can consider the assertion that `z1 == 100` to be equivalent to a range constraint for `z1` to fit within
//! 7 bits (the minimum necessary to hold the value `100`).
//!
//! ## Array indexing
//!
//! Another situation which adds an implicit range constraint are array indexing, for example in the program:
//!
//! ```noir
//! fn main(index: u32) -> pub Field {
//!     let array: [Field; 10] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
//!     array[index]
//! }
//! ```
//!
//! Here the variable `index` is range constrained to fit within 32 bits by the `u32` type however
//! it's constrained more restrictively by the length of `array`. If `index` were 10 or greater then
//! it would result in a read past the end of the array, which is invalid. We can then remove the explicit
//! range constraint on `index` as the usage as an array index more tightly constrains its value.
//!
//! # Side effects
//!
//! The pass will keep range constraints where, should the constraint have failed, removing it
//! would allow potentially side effecting Brillig calls to be executed, before another constraint
//! further down the line would have stopped the circuit.
//!
//! [BlackBoxFunc::Range]: acir::circuit::black_box_functions::BlackBoxFunc::RANGE

use acir::{
    AcirField,
    circuit::{
        Circuit, Opcode,
        brillig::BrilligFunctionId,
        opcodes::{BlackBoxFuncCall, BlockId, FunctionInput, MemOp},
    },
    native_types::Witness,
};
use std::collections::{BTreeMap, BTreeSet, HashMap};

/// Information gathered about witnesses which are subject to range constraints.
struct RangeInfo {
    /// Opcode positions which updated this RangeInfo, i.e
    /// at which stricter bit size information becomes available.
    switch_points: BTreeSet<usize>,
    /// Strictest constraint on bit size so far.
    num_bits: u32,
    /// Indicate whether the bit size comes from an assertion or from array indexing,
    /// in which cases we can save an equivalent range constraint.
    is_implied: bool,
}

pub(crate) struct RangeOptimizer<'a, F: AcirField> {
    /// Maps witnesses to their bit size switch points.
    infos: BTreeMap<Witness, RangeInfo>,
    /// The next potential side effect for each opcode.
    brillig_side_effects: &'a BTreeMap<BrilligFunctionId, bool>,
    circuit: Circuit<F>,
}

impl<'a, F: AcirField> RangeOptimizer<'a, F> {
    /// Creates a new `RangeOptimizer` by collecting all known range
    /// constraints from `Circuit`.
    pub(crate) fn new(
        circuit: Circuit<F>,
        brillig_side_effects: &'a BTreeMap<BrilligFunctionId, bool>,
    ) -> Self {
        let infos = Self::collect_ranges(&circuit);
        Self { circuit, infos, brillig_side_effects }
    }

    /// Collect range information about witnesses.
    fn collect_ranges(circuit: &Circuit<F>) -> BTreeMap<Witness, RangeInfo> {
        let mut infos: BTreeMap<Witness, RangeInfo> = BTreeMap::new();
        let mut memory_block_lengths_bit_size: HashMap<BlockId, u32> = HashMap::new();

        for (idx, opcode) in circuit.opcodes.iter().enumerate() {
            let Some((witness, num_bits, is_implied)) = (match opcode {
                Opcode::AssertZero(expr) => {
                    // If the opcode is constraining a witness to be equal to a value then it can be considered
                    // as a range opcode for the number of bits required to hold that value.
                    if expr.is_degree_one_univariate() {
                        let (k, witness) = expr.linear_combinations[0];
                        let constant = expr.q_c;
                        let witness_value = -constant / k;

                        if witness_value.is_zero() {
                            Some((witness, 0, true))
                        } else {
                            let implied_range_constraint_bits = witness_value.num_bits();
                            Some((witness, implied_range_constraint_bits, true))
                        }
                    } else {
                        None
                    }
                }

                Opcode::BlackBoxFuncCall(BlackBoxFuncCall::RANGE { input, num_bits }) => {
                    if let FunctionInput::Witness(witness) = input {
                        Some((*witness, *num_bits, false))
                    } else {
                        None
                    }
                }

                Opcode::MemoryInit { block_id, init, .. } => {
                    memory_block_lengths_bit_size
                        .insert(*block_id, memory_block_implied_max_bits(init));
                    None
                }

                Opcode::MemoryOp { block_id, op: MemOp { index, .. }, .. } => {
                    index.to_witness().map(|witness| {
                        (
                            witness,
                            *memory_block_lengths_bit_size
                                .get(block_id)
                                .expect("memory must be initialized before any reads/writes"),
                            true,
                        )
                    })
                }

                _ => None,
            }) else {
                continue;
            };

            // Check if the witness has already been recorded and if the witness
            // size is more than the current one, we replace it
            infos
                .entry(witness)
                .and_modify(|info| {
                    if num_bits < info.num_bits
                        || num_bits == info.num_bits && is_implied && !info.is_implied
                    {
                        info.switch_points.insert(idx);
                        info.num_bits = num_bits;
                        info.is_implied = is_implied;
                    }
                })
                .or_insert_with(|| RangeInfo {
                    num_bits,
                    is_implied,
                    switch_points: BTreeSet::from_iter(std::iter::once(idx)),
                });
        }
        infos
    }

    /// Returns a `Circuit` where each Witness is only range constrained
    /// a minimal number of times that still allows us to avoid executing
    /// any new side effects due to their removal.
    ///
    /// The idea is to keep only the RANGE opcodes that have stricly smaller bit-size requirements
    /// than before, i.e the ones that are at a 'switch point'.
    /// Furthermore, we only keep the switch points that are last before
    /// a 'side-effect' opcode (i.e a Brillig call).
    /// As a result, we simply do a backward pass on the opcodes, so that the last Brillig call
    /// is known before reaching a RANGE opcode.
    pub(crate) fn replace_redundant_ranges(
        self,
        order_list: Vec<usize>,
    ) -> (Circuit<F>, Vec<usize>) {
        let mut new_order_list = Vec::with_capacity(order_list.len());
        let mut optimized_opcodes = Vec::with_capacity(self.circuit.opcodes.len());
        // Consider the index beyond the last as a pseudo size effect by which time all constraints need to be inserted.
        let mut next_side_effect = self.circuit.opcodes.len();
        // Going in reverse so we can propagate the side effect information backwards.
        for (idx, opcode) in self.circuit.opcodes.into_iter().enumerate().rev() {
            let Some(witness) = (match opcode {
                Opcode::BlackBoxFuncCall(BlackBoxFuncCall::RANGE {
                    input: FunctionInput::Witness(witness),
                    ..
                }) => Some(witness),
                Opcode::BrilligCall { id, .. } => {
                    // Assume that Brillig calls might have side effects, unless we know they don't.
                    if self.brillig_side_effects.get(&id).copied().unwrap_or(true) {
                        next_side_effect = idx;
                    }
                    None
                }
                _ => None,
            }) else {
                // If its not the range opcode, add it to the opcode list and continue.
                optimized_opcodes.push(opcode.clone());
                new_order_list.push(order_list[idx]);
                continue;
            };

            let info = self.infos.get(&witness).expect("Could not find witness. This should never be the case if `collect_ranges` is called");

            // If this is not a switch point, then we should have already added a range constraint at least as strict, if it was needed.
            if !info.switch_points.contains(&idx) {
                continue;
            }

            // Check if we have an even stricter point before the next side effect.
            let has_stricter_before_next_side_effect = info
                .switch_points
                .iter()
                .any(|switch_idx| *switch_idx > idx && *switch_idx < next_side_effect);

            // If there is something even stricter before the next side effect (or the end), we don't need this.
            if has_stricter_before_next_side_effect {
                continue;
            }

            new_order_list.push(order_list[idx]);
            optimized_opcodes.push(opcode.clone());
        }

        // Restore forward order.
        optimized_opcodes.reverse();
        new_order_list.reverse();

        (Circuit { opcodes: optimized_opcodes, ..self.circuit }, new_order_list)
    }
}

/// Calculate the maximum number of bits required to index a memory block of a certain size.
fn memory_block_implied_max_bits(init: &[Witness]) -> u32 {
    let array_len = init.len() as u32;
    let max_index = array_len.saturating_sub(1);
    32 - max_index.leading_zeros()
}

#[cfg(test)]
mod tests {
    use std::collections::BTreeMap;

    use crate::{
        assert_circuit_snapshot,
        compiler::optimizers::redundant_range::{RangeOptimizer, memory_block_implied_max_bits},
    };
    use acir::{
        circuit::{Circuit, brillig::BrilligFunctionId},
        native_types::Witness,
    };

    #[test]
    fn correctly_calculates_memory_block_implied_max_bits() {
        assert_eq!(memory_block_implied_max_bits(&[]), 0);
        assert_eq!(memory_block_implied_max_bits(&[Witness(0); 1]), 0);
        assert_eq!(memory_block_implied_max_bits(&[Witness(0); 2]), 1);
        assert_eq!(memory_block_implied_max_bits(&[Witness(0); 3]), 2);
        assert_eq!(memory_block_implied_max_bits(&[Witness(0); 4]), 2);
        assert_eq!(memory_block_implied_max_bits(&[Witness(0); 8]), 3);
        assert_eq!(memory_block_implied_max_bits(&[Witness(0); u8::MAX as usize]), 8);
        assert_eq!(memory_block_implied_max_bits(&[Witness(0); u16::MAX as usize]), 16);
    }

    #[test]
    fn retain_lowest_range_size() {
        // The optimizer should keep the lowest bit size range constraint
        let src = "
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 32
        BLACKBOX::RANGE input: w1, bits: 16
        ";
        let circuit = Circuit::from_str(src).unwrap();

        let acir_opcode_positions = circuit.opcodes.iter().enumerate().map(|(i, _)| i).collect();
        let brillig_side_effects = BTreeMap::new();
        let optimizer = RangeOptimizer::new(circuit, &brillig_side_effects);

        let info = optimizer
            .infos
            .get(&Witness(1))
            .expect("Witness(1) was inserted, but it is missing from the map");
        assert_eq!(
            info.num_bits, 16,
            "expected a range size of 16 since that was the lowest bit size provided"
        );

        let (optimized_circuit, _) = optimizer.replace_redundant_ranges(acir_opcode_positions);
        assert_circuit_snapshot!(optimized_circuit, @r"
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 16
        ");
    }

    #[test]
    fn remove_duplicates() {
        // The optimizer should remove all duplicate range opcodes.
        let src = "
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 16
        BLACKBOX::RANGE input: w1, bits: 16
        BLACKBOX::RANGE input: w2, bits: 23
        BLACKBOX::RANGE input: w2, bits: 23
        ";
        let circuit = Circuit::from_str(src).unwrap();

        let acir_opcode_positions = circuit.opcodes.iter().enumerate().map(|(i, _)| i).collect();
        let brillig_side_effects = BTreeMap::new();
        let optimizer = RangeOptimizer::new(circuit, &brillig_side_effects);
        let (optimized_circuit, _) = optimizer.replace_redundant_ranges(acir_opcode_positions);
        assert_circuit_snapshot!(optimized_circuit, @r"
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 16
        BLACKBOX::RANGE input: w2, bits: 23
        ");
    }

    #[test]
    fn non_range_opcodes() {
        // The optimizer should not remove or change non-range opcodes
        // The four AssertZero opcodes should remain unchanged.
        let src = "
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 16
        BLACKBOX::RANGE input: w1, bits: 16
        ASSERT 0 = 0
        ASSERT 0 = 0
        ASSERT 0 = 0
        ASSERT 0 = 0
        ";
        let circuit = Circuit::from_str(src).unwrap();

        let acir_opcode_positions = circuit.opcodes.iter().enumerate().map(|(i, _)| i).collect();
        let brillig_side_effects = BTreeMap::new();
        let optimizer = RangeOptimizer::new(circuit, &brillig_side_effects);
        let (optimized_circuit, _) = optimizer.replace_redundant_ranges(acir_opcode_positions);
        assert_circuit_snapshot!(optimized_circuit, @r"
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 16
        ASSERT 0 = 0
        ASSERT 0 = 0
        ASSERT 0 = 0
        ASSERT 0 = 0
        ");
    }

    #[test]
    fn constant_implied_ranges() {
        // The optimizer should use knowledge about constant witness assignments to remove range opcodes.
        let src = "
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 16
        ASSERT w1 = 0
        ";
        let circuit = Circuit::from_str(src).unwrap();

        let acir_opcode_positions = circuit.opcodes.iter().enumerate().map(|(i, _)| i).collect();
        let brillig_side_effects = BTreeMap::new();
        let optimizer = RangeOptimizer::new(circuit, &brillig_side_effects);
        let (optimized_circuit, _) = optimizer.replace_redundant_ranges(acir_opcode_positions);
        assert_circuit_snapshot!(optimized_circuit, @r"
        private parameters: []
        public parameters: []
        return values: []
        ASSERT w1 = 0
        ");
    }

    #[test]
    fn potential_side_effects() {
        // The optimizer should not remove range constraints if doing so might allow invalid side effects to go through.
        let src = "
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 32

        // Call brillig with w2
        BRILLIG CALL func: 0, inputs: [w2], outputs: []
        BLACKBOX::RANGE input: w1, bits: 16

        // Another call
        BRILLIG CALL func: 0, inputs: [w2], outputs: []

        // One more constraint, but this is redundant.
        BLACKBOX::RANGE input: w1, bits: 64

        // assert w1 == 0
        ASSERT w1 = 0
        ";
        let circuit = Circuit::from_str(src).unwrap();

        let acir_opcode_positions: Vec<usize> =
            circuit.opcodes.iter().enumerate().map(|(i, _)| i).collect();

        // Consider the Brillig function to have a side effect.
        let brillig_side_effects = BTreeMap::from_iter(vec![(BrilligFunctionId(0), true)]);

        let optimizer = RangeOptimizer::new(circuit, &brillig_side_effects);
        let (optimized_circuit, _) =
            optimizer.replace_redundant_ranges(acir_opcode_positions.clone());

        // `BLACKBOX::RANGE [w1]:32 bits []` remains: The minimum does not propagate backwards.
        assert_circuit_snapshot!(optimized_circuit, @r"
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 32
        BRILLIG CALL func: 0, inputs: [w2], outputs: []
        BLACKBOX::RANGE input: w1, bits: 16
        BRILLIG CALL func: 0, inputs: [w2], outputs: []
        ASSERT w1 = 0
        ");

        // Applying again should have no effect (despite the range having the same bit size as the assert).
        let optimizer = RangeOptimizer::new(optimized_circuit.clone(), &brillig_side_effects);
        let (double_optimized_circuit, _) =
            optimizer.replace_redundant_ranges(acir_opcode_positions);
        assert_eq!(optimized_circuit.to_string(), double_optimized_circuit.to_string());
    }

    #[test]
    fn array_implied_ranges() {
        // The optimizer should use knowledge about array lengths and witnesses used to index these to remove range opcodes.
        let src = "
        private parameters: []
        public parameters: []
        return values: []
        BLACKBOX::RANGE input: w1, bits: 16
        INIT b0 = [w0, w0, w0, w0, w0, w0, w0, w0]
        READ w2 = b0[w1]
        ";
        let circuit = Circuit::from_str(src).unwrap();

        let acir_opcode_positions = circuit.opcodes.iter().enumerate().map(|(i, _)| i).collect();
        let brillig_side_effects = BTreeMap::new();
        let optimizer = RangeOptimizer::new(circuit, &brillig_side_effects);
        let (optimized_circuit, _) = optimizer.replace_redundant_ranges(acir_opcode_positions);
        assert_circuit_snapshot!(optimized_circuit, @r"
        private parameters: []
        public parameters: []
        return values: []
        INIT b0 = [w0, w0, w0, w0, w0, w0, w0, w0]
        READ w2 = b0[w1]
        ");
    }
}