acvm/compiler/transformers/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/// This module applies backend specific transformation to a [`Circuit`].
///
/// ## CSAT: transforms AssertZero opcodes into AssertZero opcodes having the required width.
///
/// For instance, if the width is 4, the AssertZero opcode x1 + x2 + x3 + x4 + x5 - y = 0 will be transformed using 2 intermediate variables (z1,z2):
/// x1 + x2 + x3 = z1
/// x4 + x5 = z2
/// z1 + z2 - y = 0
/// If x1,..x5 are inputs to the program, they are taggeg as 'solvable', and would be used to compute the value of y.
/// If we generate the intermediate variable x4 + x5 - y = z3, we get an unsolvable circuit because this AssertZero opcode will have two unkwnon values: y and z3
/// So the CSAT transformation keep track of which witness would be solved for each opcode in order to only generate solvable intermediat variables.
///
/// ## eliminate intermediate variables
/// The 'eliminate intermediate variables' pass will remove any intermediate variables (for instance created by the previous transformation)
/// that are used in exactly two AssertZero opcodes.
/// This results in arithmetic opcodes having linear combinations of potentially large width.
/// For instance if the intermediate variable is z1 is only used in y:
/// z1 = x1 + x2 +x3
/// y = z1 + x4
/// We remove it, undoing the work done during the CSAT transformation: y = x1 + x2 + x3 + x4
///
/// We do this because the backend is expected to handle linear combinations of 'unbounded width' in a more efficient way
/// than the 'CSAT transformation'.
/// However, it is worth to compute intermediate variables if they are used in more than one other opcode.
///
/// ## redundant_range
/// The 'range optimization' pass, from the optimizers module will remove any redundant range opcodes again.
use std::collections::BTreeMap;
use acir::{
AcirField,
circuit::{
Circuit, ExpressionWidth, Opcode,
brillig::{BrilligFunctionId, BrilligInputs, BrilligOutputs},
opcodes::{BlackBoxFuncCall, FunctionInput, MemOp},
},
native_types::{Expression, Witness},
};
use indexmap::IndexMap;
mod csat;
pub(crate) use csat::CSatTransformer;
pub use csat::MIN_EXPRESSION_WIDTH;
use std::hash::BuildHasher;
use tracing::info;
use super::{
AcirTransformationMap,
optimizers::{MergeExpressionsOptimizer, RangeOptimizer},
transform_assert_messages,
};
/// We need multiple passes to stabilize the output.
/// The value was determined by running tests.
const MAX_TRANSFORMER_PASSES: usize = 3;
/// Applies backend specific optimizations to a [`Circuit`].
pub fn transform<F: AcirField>(
acir: Circuit<F>,
expression_width: ExpressionWidth,
brillig_side_effects: &BTreeMap<BrilligFunctionId, bool>,
) -> (Circuit<F>, AcirTransformationMap) {
// Track original acir opcode positions throughout the transformation passes of the compilation
// by applying the modifications done to the circuit opcodes and also to the opcode_positions (delete and insert)
let acir_opcode_positions = acir.opcodes.iter().enumerate().map(|(i, _)| i).collect();
let (mut acir, acir_opcode_positions) =
transform_internal(acir, expression_width, acir_opcode_positions, brillig_side_effects);
let transformation_map = AcirTransformationMap::new(&acir_opcode_positions);
acir.assert_messages = transform_assert_messages(acir.assert_messages, &transformation_map);
(acir, transformation_map)
}
/// Applies backend specific optimizations to a [`Circuit`].
///
/// Accepts an injected `acir_opcode_positions` to allow transformations to be applied directly after optimizations.
///
/// Does multiple passes until the output stabilizes.
#[tracing::instrument(level = "trace", name = "transform_acir", skip(acir, acir_opcode_positions))]
pub(super) fn transform_internal<F: AcirField>(
mut acir: Circuit<F>,
expression_width: ExpressionWidth,
mut acir_opcode_positions: Vec<usize>,
brillig_side_effects: &BTreeMap<BrilligFunctionId, bool>,
) -> (Circuit<F>, Vec<usize>) {
if acir.opcodes.len() == 1 && matches!(acir.opcodes[0], Opcode::BrilligCall { .. }) {
info!("Program is fully unconstrained, skipping transformation pass");
return (acir, acir_opcode_positions);
}
// Allow multiple passes until we have stable output.
let mut prev_opcodes_hash = rustc_hash::FxBuildHasher.hash_one(&acir.opcodes);
// For most test programs it would be enough to loop here, but some of them
// don't stabilize unless we also repeat the backend agnostic optimizations.
for _ in 0..MAX_TRANSFORMER_PASSES {
info!("Number of opcodes {}", acir.opcodes.len());
let (new_acir, new_acir_opcode_positions) = transform_internal_once(
acir,
expression_width,
acir_opcode_positions,
brillig_side_effects,
);
acir = new_acir;
acir_opcode_positions = new_acir_opcode_positions;
let new_opcodes_hash = rustc_hash::FxBuildHasher.hash_one(&acir.opcodes);
if new_opcodes_hash == prev_opcodes_hash {
break;
}
prev_opcodes_hash = new_opcodes_hash;
}
// After the elimination of intermediate variables the `current_witness_index` is potentially higher than it needs to be,
// which would cause gaps if we ran the optimization a second time, making it look like new variables were added.
acir.current_witness_index = max_witness(&acir).witness_index();
(acir, acir_opcode_positions)
}
/// Accepts an injected `acir_opcode_positions` to allow transformations to be applied directly after optimizations.
///
/// If the width is unbounded, it does nothing.
/// If it is bounded, it first performs the 'CSAT transformation' in one pass, by creating intermediate variables when necessary.
/// Then it performs `eliminate_intermediate_variable()` which (re-)combine intermediate variables used only once.
/// It concludes with a round of `replace_redundant_ranges()` which removes range checks made redundant by the previous pass.
#[tracing::instrument(
level = "trace",
name = "transform_acir_once",
skip(acir, acir_opcode_positions)
)]
fn transform_internal_once<F: AcirField>(
mut acir: Circuit<F>,
expression_width: ExpressionWidth,
acir_opcode_positions: Vec<usize>,
brillig_side_effects: &BTreeMap<BrilligFunctionId, bool>,
) -> (Circuit<F>, Vec<usize>) {
// If the expression width is unbounded, we don't need to do anything.
let mut transformer = match &expression_width {
ExpressionWidth::Unbounded => {
return (acir, acir_opcode_positions);
}
ExpressionWidth::Bounded { width } => {
let mut csat = CSatTransformer::new(*width);
for value in acir.circuit_arguments() {
csat.mark_solvable(value);
}
csat
}
};
// 1. CSAT transformation
// Process each opcode in the circuit by marking the solvable witnesses and transforming the AssertZero opcodes
// to the required width by creating intermediate variables.
// Knowing if a witness is solvable avoids creating un-solvable intermediate variables.
let mut new_acir_opcode_positions: Vec<usize> = Vec::with_capacity(acir_opcode_positions.len());
// Optimize the assert-zero gates by reducing them into the correct width and
// creating intermediate variables when necessary
let mut transformed_opcodes = Vec::new();
let mut next_witness_index = acir.current_witness_index + 1;
// maps a normalized expression to the intermediate variable which represents the expression, along with its 'norm'
// the 'norm' is simply the value of the first non zero coefficient in the expression, taken from the linear terms, or quadratic terms if there is none.
let mut intermediate_variables: IndexMap<Expression<F>, (F, Witness)> = IndexMap::new();
for (index, opcode) in acir.opcodes.into_iter().enumerate() {
match opcode {
Opcode::AssertZero(arith_expr) => {
let len = intermediate_variables.len();
let arith_expr = transformer.transform(
arith_expr,
&mut intermediate_variables,
&mut next_witness_index,
);
let mut new_opcodes = Vec::new();
for (g, (norm, w)) in intermediate_variables.iter().skip(len) {
// de-normalize
let mut intermediate_opcode = g * *norm;
// constrain the intermediate opcode to the intermediate variable
intermediate_opcode.linear_combinations.push((-F::one(), *w));
intermediate_opcode.sort();
new_opcodes.push(intermediate_opcode);
}
new_opcodes.push(arith_expr);
for opcode in new_opcodes {
new_acir_opcode_positions.push(acir_opcode_positions[index]);
transformed_opcodes.push(Opcode::AssertZero(opcode));
}
}
Opcode::BlackBoxFuncCall(ref func) => {
for witness in func.get_outputs_vec() {
transformer.mark_solvable(witness);
}
new_acir_opcode_positions.push(acir_opcode_positions[index]);
transformed_opcodes.push(opcode);
}
Opcode::MemoryInit { .. } => {
// `MemoryInit` does not write values to the `WitnessMap`
new_acir_opcode_positions.push(acir_opcode_positions[index]);
transformed_opcodes.push(opcode);
}
Opcode::MemoryOp { ref op, .. } => {
for (_, witness1, witness2) in &op.value.mul_terms {
transformer.mark_solvable(*witness1);
transformer.mark_solvable(*witness2);
}
for (_, witness) in &op.value.linear_combinations {
transformer.mark_solvable(*witness);
}
new_acir_opcode_positions.push(acir_opcode_positions[index]);
transformed_opcodes.push(opcode);
}
Opcode::BrilligCall { ref outputs, .. } => {
for output in outputs {
match output {
BrilligOutputs::Simple(w) => transformer.mark_solvable(*w),
BrilligOutputs::Array(v) => {
for witness in v {
transformer.mark_solvable(*witness);
}
}
}
}
new_acir_opcode_positions.push(acir_opcode_positions[index]);
transformed_opcodes.push(opcode);
}
Opcode::Call { ref outputs, .. } => {
for witness in outputs {
transformer.mark_solvable(*witness);
}
// `Call` does not write values to the `WitnessMap`
// A separate ACIR function should have its own respective `WitnessMap`
new_acir_opcode_positions.push(acir_opcode_positions[index]);
transformed_opcodes.push(opcode);
}
}
}
let current_witness_index = next_witness_index - 1;
acir = Circuit {
current_witness_index,
opcodes: transformed_opcodes,
// The transformer does not add new public inputs
..acir
};
// 2. Eliminate intermediate variables, when they are used in exactly two arithmetic opcodes.
let mut merge_optimizer = MergeExpressionsOptimizer::new();
let (opcodes, new_acir_opcode_positions) =
merge_optimizer.eliminate_intermediate_variable(&acir, new_acir_opcode_positions);
// n.b. if we do not update current_witness_index after the eliminate_intermediate_variable pass, the real index could be less.
acir = Circuit {
opcodes,
// The optimizer does not add new public inputs
..acir
};
// 3. Remove redundant range constraints.
// The `MergeOptimizer` can merge two witnesses which have range opcodes applied to them
// so we run the `RangeOptimizer` afterwards to clear these up.
let range_optimizer = RangeOptimizer::new(acir, brillig_side_effects);
let (acir, new_acir_opcode_positions) =
range_optimizer.replace_redundant_ranges(new_acir_opcode_positions);
(acir, new_acir_opcode_positions)
}
/// Find the witness with the highest ID in the circuit.
fn max_witness<F: AcirField>(circuit: &Circuit<F>) -> Witness {
let mut witnesses = WitnessFolder::new(Witness::default(), |state, witness| {
*state = witness.max(*state);
});
witnesses.fold_circuit(circuit);
witnesses.into_state()
}
/// Fold all witnesses in a circuit.
struct WitnessFolder<S, A> {
state: S,
accumulate: A,
}
impl<S, A> WitnessFolder<S, A>
where
A: Fn(&mut S, Witness),
{
/// Create the folder with some initial state and an accumulator function.
fn new(init: S, accumulate: A) -> Self {
Self { state: init, accumulate }
}
/// Take the accumulated state.
fn into_state(self) -> S {
self.state
}
/// Add all witnesses from the circuit.
fn fold_circuit<F: AcirField>(&mut self, circuit: &Circuit<F>) {
self.fold_many(circuit.private_parameters.iter());
self.fold_many(circuit.public_parameters.0.iter());
self.fold_many(circuit.return_values.0.iter());
for opcode in &circuit.opcodes {
self.fold_opcode(opcode);
}
}
/// Fold a witness into the state.
fn fold(&mut self, witness: Witness) {
(self.accumulate)(&mut self.state, witness);
}
/// Fold many witnesses into the state.
fn fold_many<'w, I: Iterator<Item = &'w Witness>>(&mut self, witnesses: I) {
for w in witnesses {
self.fold(*w);
}
}
/// Add witnesses from the opcode.
fn fold_opcode<F: AcirField>(&mut self, opcode: &Opcode<F>) {
match opcode {
Opcode::AssertZero(expr) => {
self.fold_expr(expr);
}
Opcode::BlackBoxFuncCall(call) => self.fold_blackbox(call),
Opcode::MemoryOp { block_id: _, op } => {
let MemOp { operation, index, value } = op;
self.fold_expr(operation);
self.fold_expr(index);
self.fold_expr(value);
}
Opcode::MemoryInit { block_id: _, init, block_type: _ } => {
for w in init {
self.fold(*w);
}
}
// We keep the display for a BrilligCall and circuit Call separate as they
// are distinct in their functionality and we should maintain this separation for debugging.
Opcode::BrilligCall { id: _, inputs, outputs, predicate } => {
if let Some(pred) = predicate {
self.fold_expr(pred);
}
self.fold_brillig_inputs(inputs);
self.fold_brillig_outputs(outputs);
}
Opcode::Call { id: _, inputs, outputs, predicate } => {
if let Some(pred) = predicate {
self.fold_expr(pred);
}
self.fold_many(inputs.iter());
self.fold_many(outputs.iter());
}
}
}
fn fold_expr<F: AcirField>(&mut self, expr: &Expression<F>) {
for i in &expr.mul_terms {
self.fold(i.1);
self.fold(i.2);
}
for i in &expr.linear_combinations {
self.fold(i.1);
}
}
fn fold_brillig_inputs<F: AcirField>(&mut self, inputs: &[BrilligInputs<F>]) {
for input in inputs {
match input {
BrilligInputs::Single(expr) => {
self.fold_expr(expr);
}
BrilligInputs::Array(exprs) => {
for expr in exprs {
self.fold_expr(expr);
}
}
BrilligInputs::MemoryArray(_) => {}
}
}
}
fn fold_brillig_outputs(&mut self, outputs: &[BrilligOutputs]) {
for output in outputs {
match output {
BrilligOutputs::Simple(w) => {
self.fold(*w);
}
BrilligOutputs::Array(ws) => self.fold_many(ws.iter()),
}
}
}
fn fold_blackbox<F: AcirField>(&mut self, call: &BlackBoxFuncCall<F>) {
match call {
BlackBoxFuncCall::AES128Encrypt { inputs, iv, key, outputs } => {
self.fold_inputs(inputs.as_slice());
self.fold_inputs(iv.as_slice());
self.fold_inputs(key.as_slice());
self.fold_many(outputs.iter());
}
BlackBoxFuncCall::AND { lhs, rhs, output, .. } => {
self.fold_input(lhs);
self.fold_input(rhs);
self.fold(*output);
}
BlackBoxFuncCall::XOR { lhs, rhs, output, .. } => {
self.fold_input(lhs);
self.fold_input(rhs);
self.fold(*output);
}
BlackBoxFuncCall::RANGE { input, .. } => {
self.fold_input(input);
}
BlackBoxFuncCall::Blake2s { inputs, outputs } => {
self.fold_inputs(inputs.as_slice());
self.fold_many(outputs.iter());
}
BlackBoxFuncCall::Blake3 { inputs, outputs } => {
self.fold_inputs(inputs.as_slice());
self.fold_many(outputs.iter());
}
BlackBoxFuncCall::EcdsaSecp256k1 {
public_key_x,
public_key_y,
signature,
hashed_message,
output,
predicate,
} => {
self.fold_inputs(public_key_x.as_slice());
self.fold_inputs(public_key_y.as_slice());
self.fold_inputs(signature.as_slice());
self.fold_inputs(hashed_message.as_slice());
self.fold(*output);
self.fold_input(predicate);
}
BlackBoxFuncCall::EcdsaSecp256r1 {
public_key_x,
public_key_y,
signature,
hashed_message,
output,
predicate,
} => {
self.fold_inputs(public_key_x.as_slice());
self.fold_inputs(public_key_y.as_slice());
self.fold_inputs(signature.as_slice());
self.fold_inputs(hashed_message.as_slice());
self.fold(*output);
self.fold_input(predicate);
}
BlackBoxFuncCall::MultiScalarMul { points, scalars, predicate, outputs } => {
self.fold_inputs(points.as_slice());
self.fold_inputs(scalars.as_slice());
self.fold_input(predicate);
let (x, y, i) = outputs;
self.fold(*x);
self.fold(*y);
self.fold(*i);
}
BlackBoxFuncCall::EmbeddedCurveAdd { input1, input2, predicate, outputs } => {
self.fold_inputs(input1.as_slice());
self.fold_inputs(input2.as_slice());
self.fold_input(predicate);
let (x, y, i) = outputs;
self.fold(*x);
self.fold(*y);
self.fold(*i);
}
BlackBoxFuncCall::Keccakf1600 { inputs, outputs } => {
self.fold_inputs(inputs.as_slice());
self.fold_many(outputs.iter());
}
BlackBoxFuncCall::RecursiveAggregation {
verification_key,
proof,
public_inputs,
key_hash,
proof_type: _,
predicate,
} => {
self.fold_inputs(verification_key.as_slice());
self.fold_inputs(proof.as_slice());
self.fold_inputs(public_inputs.as_slice());
self.fold_input(key_hash);
self.fold_input(predicate);
}
BlackBoxFuncCall::Poseidon2Permutation { inputs, outputs } => {
self.fold_inputs(inputs.as_slice());
self.fold_many(outputs.iter());
}
BlackBoxFuncCall::Sha256Compression { inputs, hash_values, outputs } => {
self.fold_inputs(inputs.as_slice());
self.fold_inputs(hash_values.as_slice());
self.fold_many(outputs.iter());
}
}
}
fn fold_inputs<F: AcirField>(&mut self, inputs: &[FunctionInput<F>]) {
for input in inputs {
self.fold_input(input);
}
}
fn fold_input<F: AcirField>(&mut self, input: &FunctionInput<F>) {
if let FunctionInput::Witness(witness) = input {
self.fold(*witness);
}
}
}