acvm/pwg/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
// Re-usable methods that backends can use to implement their PWG
//! This module contains methods to implement the partial witness generation (PWG) of an ACIR program.
//! The goal of ACIR execution is to compute the values of all the ACIR witnesses, or an error if it could not compute them all.
//! A proving system will then be able to use the ACIR circuit and the values of the ACIR witnesses to generate a proof of this execution.
//! The ACIR opcodes are not modified by the execution.
//! Witness generation means getting valid values for the witnesses used by the ACIR opcodes of the program.
//! They are called *partial* witness because a proving system may create additional witnesses on its own for
//! generating the proof (and a corresponding low-level circuit). The PWG generates values for all the witnesses
//! of the ACIR program, or returns an error if it cannot do it.
//!
//! Implementation details & examples:
//! It starts by instantiating an ACVM (ACIR Virtual Machine), which executes the given ACIR opcodes in the `solve()` function.
//!
//! Parameters: When instantiating the ACVM, it needs to be provided with:
//! - a `backend` implementing the `BlackBoxFunctionSolver` trait. Different implementation can be used depending on the EC used by the underlying proving system.
//! - `opcodes`: the ACIR opcodes of the program to solve.
//! - `initial_witness`: a mapping of initial witness values representing the inputs of the program. The ACVM will update this map as it solves the opcodes.
//! - `unconstrained_functions`: the Brillig bytecode of the unconstrained functions used by the program.
//! - `assertion_payloads`: additional information used to provide feedback to the user when an assertion fails.
//!
//! Returns: [`ACVMStatus`]
//!
//! Each opcode is solved independently. In general we require its inputs to be already known, i.e previously solved,
//! and the output is simply computed from the inputs, and then the output becomes 'known' for the subsequent opcodes.
//!
//! See [`acir::circuit::Opcode`] for more details.
//!
//! Example:
// Compiled ACIR for main (non-transformed):
// func 0
// private parameters: [w0, w1, w2, w3, w4]
// public parameters: []
// return values: [w9]
// BLACKBOX::RANGE input: w0, bits: 32
// BLACKBOX::RANGE input: w1, bits: 32
// BLACKBOX::RANGE input: w2, bits: 32
// BLACKBOX::RANGE input: w3, bits: 32
// BLACKBOX::RANGE input: w4, bits: 32
// ASSERT w0 - w1 - w6 = 0
// BRILLIG CALL func: 0, inputs: [w6], outputs: [w7]
// ASSERT w6*w7 + w8 - 1 = 0
// ASSERT w6*w8 = 0
// ASSERT w1*w8 = 0
// ASSERT w0 - w2 - w9 = 0
//!
//! This ACIR program defines the 'main' function and indicates it is 'non-transformed'.
//! Indeed, some ACIR pass can transform the ACIR program in order to apply optimizations,
//! or to make it compatible with a specific proving system.
//! However, ACIR execution is expected to work on any ACIR program (transformed or not).
//! Then we see the parameters of the program as public and private inputs.
//! The `initial_witness` needs to contain values for these parameters before execution, else
//! the execution will fail.
//! The first ACIR opcodes are RANGE opcodes which ensure the inputs have the expected range (as specified in the Noir source code).
//! Solving this black-box simply means to validate that the values (from `initial_witness`) are indeed 32 bits for w0, w1, w2, w3, w4
//! If `initial_witness` does not have values for w0, w1, w2, w3, w4, or if the values are over 32 bits, the execution will fail.
//! The next opcode is an AssertZero opcode: ASSERT w0 - w1 - w6 = 0, which indicates that `w0 - w1 - w6` should be equal to 0.
//! Since we know the values of `w0, w1` from `initial_witness`, we can compute `w6 = w0 + w1` so that the AssertZero is satisfied.
//! Solving AssertZero means computing the unknown witness and adding the result to `initial_witness`, which now contains the value for `w6`.
//! The next opcode is a Brillig Call where input is `w6` and output is `w7`. From the function id of the opcode, the solver will retrieve the
//! corresponding Brillig bytecode and instantiate a Brillig VM with the value of the input. This value was just computed before.
//! Executing the Brillig VM on this input will give us the output which is the value for `w7`, that we add to `initial_witness`.
//! The next opcode is again an AssertZero: `w6 * w7 + w8 - 1 = 0`, which computes the value of `w8`.
//! The two next opcodes are AssertZero without any unknown witnesses: `w6 * w8 = 0` and `w1 * w8 = 0`
//! Solving such opcodes means that we compute `w6 * w8 ` and `w1 * w8` using the known values, and check that they evaluate to 0.
//! If not, we would return an error.
//! Finally, the last AssertZero computes `w9` which is the last witness. All of the witnesses have now been computed; execution is complete.
use std::collections::HashMap;
use acir::{
AcirField, BlackBoxFunc,
brillig::ForeignCallResult,
circuit::{
AssertionPayload, ErrorSelector, ExpressionOrMemory, Opcode, OpcodeLocation,
brillig::{BrilligBytecode, BrilligFunctionId, BrilligInputs, BrilligOutputs},
opcodes::{AcirFunctionId, BlockId, FunctionInput, InvalidInputBitSize},
},
native_types::{Expression, Witness, WitnessMap},
};
use acvm_blackbox_solver::BlackBoxResolutionError;
use brillig_vm::fuzzing::BranchToFeatureMap;
use self::{arithmetic::ExpressionSolver, memory_op::MemoryOpSolver};
use crate::BlackBoxFunctionSolver;
use thiserror::Error;
// arithmetic
pub(crate) mod arithmetic;
// Brillig bytecode
pub(crate) mod brillig;
// black box functions
pub(crate) mod blackbox;
mod memory_op;
pub use self::brillig::{BrilligSolver, BrilligSolverStatus};
pub use brillig::ForeignCallWaitInfo;
use serde::{Deserialize, Serialize};
#[derive(Debug, Clone, PartialEq)]
pub enum ACVMStatus<F> {
/// All witnesses have been computed and all opcodes have been successfully resolved. Execution is complete.
Solved,
/// The ACVM is processing the circuit, i.e solving the opcodes. This status is used to resume execution after it has been paused.
InProgress,
/// The ACVM has encountered an irrecoverable error while executing the circuit and can not progress.
/// Most commonly this will be due to an unsatisfied constraint due to invalid inputs to the circuit.
Failure(OpcodeResolutionError<F>),
/// The ACVM has encountered a request for a Brillig [foreign call][brillig_vm::brillig::Opcode::ForeignCall]
/// to retrieve information from outside of the ACVM. The result of the foreign call must be passed back
/// to the ACVM using [`ACVM::resolve_pending_foreign_call`].
///
/// Once this is done, the ACVM can be restarted to solve the remaining opcodes.
RequiresForeignCall(ForeignCallWaitInfo<F>),
/// The ACVM has encountered a request for an ACIR [call][acir::circuit::Opcode]
/// to execute a separate ACVM instance. The result of the ACIR call must be passed back to the ACVM.
///
/// Once this is done, the ACVM can be restarted to solve the remaining opcodes.
RequiresAcirCall(AcirCallWaitInfo<F>),
}
impl<F> std::fmt::Display for ACVMStatus<F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ACVMStatus::Solved => write!(f, "Solved"),
ACVMStatus::InProgress => write!(f, "In progress"),
ACVMStatus::Failure(_) => write!(f, "Execution failure"),
ACVMStatus::RequiresForeignCall(_) => write!(f, "Waiting on foreign call"),
ACVMStatus::RequiresAcirCall(_) => write!(f, "Waiting on acir call"),
}
}
}
#[expect(clippy::large_enum_variant)]
pub enum StepResult<'a, F, B: BlackBoxFunctionSolver<F>> {
Status(ACVMStatus<F>),
IntoBrillig(BrilligSolver<'a, F, B>),
}
// This enum represents the different cases in which an
// opcode can be unsolvable.
// The most common being that one of its input has not been
// assigned a value.
//
// TODO(https://github.com/noir-lang/noir/issues/10052): ExpressionHasTooManyUnknowns is specific for expression solver
// TODO(https://github.com/noir-lang/noir/issues/10052): we could have a error enum for expression solver failure cases in that module
// TODO(https://github.com/noir-lang/noir/issues/10052): that can be converted into an OpcodeNotSolvable or OpcodeResolutionError enum
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum OpcodeNotSolvable<F> {
#[error("missing assignment for witness index {0}")]
MissingAssignment(u32),
#[error("Attempted to load uninitialized memory block")]
MissingMemoryBlock(u32),
#[error("expression has too many unknowns {0}")]
ExpressionHasTooManyUnknowns(Expression<F>),
}
/// Used by errors to point to a specific opcode as that error's cause
///
/// Some errors don't have a specific opcode associated with them, or are created without one and added later.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Default)]
pub enum ErrorLocation {
#[default]
Unresolved,
Resolved(OpcodeLocation),
}
impl std::fmt::Display for ErrorLocation {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ErrorLocation::Unresolved => write!(f, "unresolved"),
ErrorLocation::Resolved(location) => {
write!(f, "{location}")
}
}
}
}
/// A dynamic assertion payload whose data has been resolved.
/// This is instantiated upon hitting an assertion failure.
#[derive(Clone, PartialEq, Eq, Debug, Serialize, Deserialize)]
pub struct RawAssertionPayload<F> {
/// Selector to the respective ABI type the data in this payload represents
pub selector: ErrorSelector,
/// Resolved data that represents some ABI type.
/// To be decoded in the final step of error resolution.
pub data: Vec<F>,
}
/// Enumeration of possible resolved assertion payloads.
/// This is instantiated upon hitting an assertion failure,
/// and can either be static strings or dynamic payloads.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum ResolvedAssertionPayload<F> {
String(String),
Raw(RawAssertionPayload<F>),
}
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum OpcodeResolutionError<F> {
#[error("Cannot solve opcode: {0}")]
OpcodeNotSolvable(#[from] OpcodeNotSolvable<F>),
#[error("Cannot satisfy constraint")]
UnsatisfiedConstrain {
opcode_location: ErrorLocation,
payload: Option<ResolvedAssertionPayload<F>>,
},
#[error("Index out of bounds, array has size {array_size:?}, but index was {index:?}")]
IndexOutOfBounds { opcode_location: ErrorLocation, index: F, array_size: u32 },
#[error("Cannot solve opcode: {invalid_input_bit_size}")]
InvalidInputBitSize {
opcode_location: ErrorLocation,
invalid_input_bit_size: InvalidInputBitSize,
},
#[error("Failed to solve blackbox function: {0}, reason: {1}")]
BlackBoxFunctionFailed(BlackBoxFunc, String),
#[error("Failed to solve brillig function")]
BrilligFunctionFailed {
function_id: BrilligFunctionId,
call_stack: Vec<OpcodeLocation>,
payload: Option<ResolvedAssertionPayload<F>>,
},
#[error("Attempted to call `main` with a `Call` opcode")]
AcirMainCallAttempted { opcode_location: ErrorLocation },
#[error(
"{results_size:?} result values were provided for {outputs_size:?} call output witnesses, most likely due to bad ACIR codegen"
)]
AcirCallOutputsMismatch { opcode_location: ErrorLocation, results_size: u32, outputs_size: u32 },
#[error("(--pedantic): Predicates are expected to be 0 or 1, but found: {pred_value}")]
PredicateLargerThanOne { opcode_location: ErrorLocation, pred_value: F },
#[error("(--pedantic): Memory operations are expected to be 0 or 1, but found: {operation}")]
MemoryOperationLargerThanOne { opcode_location: ErrorLocation, operation: F },
}
impl<F> From<BlackBoxResolutionError> for OpcodeResolutionError<F> {
fn from(value: BlackBoxResolutionError) -> Self {
match value {
BlackBoxResolutionError::Failed(func, reason) => {
OpcodeResolutionError::BlackBoxFunctionFailed(func, reason)
}
BlackBoxResolutionError::AssertFailed(error) => {
OpcodeResolutionError::UnsatisfiedConstrain {
opcode_location: ErrorLocation::Unresolved,
payload: Some(ResolvedAssertionPayload::String(error)),
}
}
}
}
}
impl<F> From<InvalidInputBitSize> for OpcodeResolutionError<F> {
fn from(invalid_input_bit_size: InvalidInputBitSize) -> Self {
Self::InvalidInputBitSize {
opcode_location: ErrorLocation::Unresolved,
invalid_input_bit_size,
}
}
}
pub type ProfilingSamples = Vec<ProfilingSample>;
#[derive(Default)]
pub struct ProfilingSample {
pub call_stack: Vec<OpcodeLocation>,
pub brillig_function_id: Option<BrilligFunctionId>,
}
pub struct ACVM<'a, F: AcirField, B: BlackBoxFunctionSolver<F>> {
status: ACVMStatus<F>,
backend: &'a B,
/// Stores the solver for memory operations acting on blocks of memory disambiguated by [block][`BlockId`].
block_solvers: HashMap<BlockId, MemoryOpSolver<F>>,
/// A list of opcodes which are to be executed by the ACVM.
opcodes: &'a [Opcode<F>],
/// Index of the next opcode to be executed.
instruction_pointer: usize,
/// A mapping of witnesses to their solved values
/// The map is updated as the ACVM executes.
witness_map: WitnessMap<F>,
brillig_solver: Option<BrilligSolver<'a, F, B>>,
/// A counter maintained throughout an ACVM process that determines
/// whether the caller has resolved the results of an ACIR [call][Opcode::Call].
acir_call_counter: usize,
/// Represents the outputs of all ACIR calls during an ACVM process
/// List is appended onto by the caller upon reaching a [ACVMStatus::RequiresAcirCall]
acir_call_results: Vec<Vec<F>>,
// Each unconstrained function referenced in the program
unconstrained_functions: &'a [BrilligBytecode<F>],
assertion_payloads: &'a [(OpcodeLocation, AssertionPayload<F>)],
profiling_active: bool,
profiling_samples: ProfilingSamples,
// Whether we need to trace brillig execution for fuzzing
brillig_fuzzing_active: bool,
// Brillig branch to feature map
brillig_branch_to_feature_map: Option<&'a BranchToFeatureMap>,
brillig_fuzzing_trace: Option<Vec<u32>>,
}
impl<'a, F: AcirField, B: BlackBoxFunctionSolver<F>> ACVM<'a, F, B> {
pub fn new(
backend: &'a B,
opcodes: &'a [Opcode<F>],
initial_witness: WitnessMap<F>,
unconstrained_functions: &'a [BrilligBytecode<F>],
assertion_payloads: &'a [(OpcodeLocation, AssertionPayload<F>)],
) -> Self {
let status = if opcodes.is_empty() { ACVMStatus::Solved } else { ACVMStatus::InProgress };
ACVM {
status,
backend,
block_solvers: HashMap::default(),
opcodes,
instruction_pointer: 0,
witness_map: initial_witness,
brillig_solver: None,
acir_call_counter: 0,
acir_call_results: Vec::default(),
unconstrained_functions,
assertion_payloads,
profiling_active: false,
profiling_samples: Vec::new(),
brillig_fuzzing_active: false,
brillig_branch_to_feature_map: None,
brillig_fuzzing_trace: None,
}
}
// Enable profiling
pub fn with_profiler(&mut self, profiling_active: bool) {
self.profiling_active = profiling_active;
}
// Enable brillig fuzzing
pub fn with_brillig_fuzzing(
&mut self,
brillig_branch_to_feature_map: Option<&'a BranchToFeatureMap>,
) {
self.brillig_fuzzing_active = brillig_branch_to_feature_map.is_some();
self.brillig_branch_to_feature_map = brillig_branch_to_feature_map;
}
pub fn get_brillig_fuzzing_trace(&self) -> Option<Vec<u32>> {
self.brillig_fuzzing_trace.clone()
}
/// Returns a reference to the current state of the ACVM's [`WitnessMap`].
///
/// Once execution has completed, the witness map can be extracted using [`ACVM::finalize`]
pub fn witness_map(&self) -> &WitnessMap<F> {
&self.witness_map
}
pub fn overwrite_witness(&mut self, witness: Witness, value: F) -> Option<F> {
self.witness_map.insert(witness, value)
}
/// Returns a slice containing the opcodes of the circuit being executed.
pub fn opcodes(&self) -> &[Opcode<F>] {
self.opcodes
}
/// Returns the index of the current opcode to be executed.
pub fn instruction_pointer(&self) -> usize {
self.instruction_pointer
}
pub fn take_profiling_samples(&mut self) -> ProfilingSamples {
std::mem::take(&mut self.profiling_samples)
}
/// Finalize the ACVM execution, returning the resulting [`WitnessMap`].
pub fn finalize(self) -> WitnessMap<F> {
if self.status != ACVMStatus::Solved {
panic!("ACVM execution is not complete: ({})", self.status);
}
self.witness_map
}
/// Updates the current status of the VM.
/// Returns the given status.
fn status(&mut self, status: ACVMStatus<F>) -> ACVMStatus<F> {
self.status = status.clone();
status
}
pub fn get_status(&self) -> &ACVMStatus<F> {
&self.status
}
/// Sets the VM status to [ACVMStatus::Failure] using the provided `error`.
/// Returns the new status.
fn fail(&mut self, error: OpcodeResolutionError<F>) -> ACVMStatus<F> {
self.status(ACVMStatus::Failure(error))
}
/// Sets the status of the VM to `RequiresForeignCall`.
/// Indicating that the VM is now waiting for a foreign call to be resolved.
fn wait_for_foreign_call(&mut self, foreign_call: ForeignCallWaitInfo<F>) -> ACVMStatus<F> {
self.status(ACVMStatus::RequiresForeignCall(foreign_call))
}
/// Return a reference to the arguments for the next pending foreign call, if one exists.
pub fn get_pending_foreign_call(&self) -> Option<&ForeignCallWaitInfo<F>> {
if let ACVMStatus::RequiresForeignCall(foreign_call) = &self.status {
Some(foreign_call)
} else {
None
}
}
/// Resolves a foreign call's [result][brillig_vm::brillig::ForeignCallResult] using a result calculated outside of the ACVM.
///
/// The ACVM can then be restarted to solve the remaining Brillig VM process as well as the remaining ACIR opcodes.
pub fn resolve_pending_foreign_call(&mut self, foreign_call_result: ForeignCallResult<F>) {
if !matches!(self.status, ACVMStatus::RequiresForeignCall(_)) {
panic!("ACVM is not expecting a foreign call response as no call was made");
}
let brillig_solver = self.brillig_solver.as_mut().expect("No active Brillig solver");
brillig_solver.resolve_pending_foreign_call(foreign_call_result);
// Now that the foreign call has been resolved then we can resume execution.
self.status(ACVMStatus::InProgress);
}
/// Sets the status of the VM to `RequiresAcirCall`
/// Indicating that the VM is now waiting for an ACIR call to be resolved
fn wait_for_acir_call(&mut self, acir_call: AcirCallWaitInfo<F>) -> ACVMStatus<F> {
self.status(ACVMStatus::RequiresAcirCall(acir_call))
}
/// Resolves an ACIR call's result (simply a list of fields) using a result calculated by a separate ACVM instance.
///
/// The current ACVM instance can then be restarted to solve the remaining ACIR opcodes.
pub fn resolve_pending_acir_call(&mut self, call_result: Vec<F>) {
if !matches!(self.status, ACVMStatus::RequiresAcirCall(_)) {
panic!("ACVM is not expecting an ACIR call response as no call was made");
}
if self.acir_call_counter < self.acir_call_results.len() {
panic!("No unresolved ACIR calls");
}
self.acir_call_results.push(call_result);
// Now that the ACIR call has been resolved then we can resume execution.
self.status(ACVMStatus::InProgress);
}
/// Executes the ACVM's circuit until execution halts.
///
/// Execution can halt due to three reasons:
/// 1. All opcodes have been executed successfully.
/// 2. The circuit has been found to be unsatisfiable.
/// 2. A Brillig [foreign call][`ForeignCallWaitInfo`] has been encountered and must be resolved.
pub fn solve(&mut self) -> ACVMStatus<F> {
while self.status == ACVMStatus::InProgress {
self.solve_opcode();
}
self.status.clone()
}
fn current_opcode(&self) -> &'a Opcode<F> {
&self.opcodes[self.instruction_pointer]
}
/// Executes a single opcode using the dedicated solver.
///
/// Foreign or ACIR Calls are deferred to the caller, which will
/// either instantiate a new ACVM to execute the called ACIR function
/// or a custom implementation to execute the foreign call.
/// Then it will resume execution of the current ACVM with the results of the call.
pub fn solve_opcode(&mut self) -> ACVMStatus<F> {
let resolution = match self.current_opcode() {
Opcode::AssertZero(expr) => ExpressionSolver::solve(&mut self.witness_map, expr),
Opcode::BlackBoxFuncCall(bb_func) => {
blackbox::solve(self.backend, &mut self.witness_map, bb_func)
}
Opcode::MemoryInit { block_id, init, .. } => {
MemoryOpSolver::new(init, &self.witness_map).map(|solver| {
let existing_block_id = self.block_solvers.insert(*block_id, solver);
assert!(existing_block_id.is_none(), "Memory block already initialized");
})
}
Opcode::MemoryOp { block_id, op } => {
let solver = self
.block_solvers
.get_mut(block_id)
.expect("Memory block should have been initialized before use");
solver.solve_memory_op(op, &mut self.witness_map, self.backend.pedantic_solving())
}
Opcode::BrilligCall { id, inputs, outputs, predicate } => {
match self.solve_brillig_call_opcode(id, inputs, outputs, predicate) {
Ok(Some(foreign_call)) => return self.wait_for_foreign_call(foreign_call),
res => res.map(|_| ()),
}
}
Opcode::Call { id, inputs, outputs, predicate } => {
match self.solve_call_opcode(id, inputs, outputs, predicate) {
Ok(Some(input_values)) => return self.wait_for_acir_call(input_values),
res => res.map(|_| ()),
}
}
};
self.handle_opcode_resolution(resolution)
}
/// Returns the status of the ACVM
/// If the status is an error, it converts the error into [OpcodeResolutionError]
fn handle_opcode_resolution(
&mut self,
resolution: Result<(), OpcodeResolutionError<F>>,
) -> ACVMStatus<F> {
match resolution {
Ok(()) => {
self.instruction_pointer += 1;
if self.instruction_pointer == self.opcodes.len() {
self.status(ACVMStatus::Solved)
} else {
self.status(ACVMStatus::InProgress)
}
}
Err(mut error) => {
match &mut error {
// If we have an index out of bounds, unsatisfied constraint, or an invalid input bit size,
// the opcode label will be unresolved because the solvers do not have knowledge of this information.
// We resolve, by setting this to the corresponding opcode that we just attempted to solve.
OpcodeResolutionError::IndexOutOfBounds {
opcode_location: opcode_index,
..
} => {
*opcode_index = ErrorLocation::Resolved(OpcodeLocation::Acir(
self.instruction_pointer(),
));
}
OpcodeResolutionError::UnsatisfiedConstrain {
opcode_location: opcode_index,
payload: assertion_payload,
} => {
let location = OpcodeLocation::Acir(self.instruction_pointer());
*opcode_index = ErrorLocation::Resolved(location);
*assertion_payload = self.extract_assertion_payload(location);
}
OpcodeResolutionError::InvalidInputBitSize {
opcode_location: opcode_index,
..
} => {
let location = OpcodeLocation::Acir(self.instruction_pointer());
*opcode_index = ErrorLocation::Resolved(location);
}
// All other errors are thrown normally.
_ => (),
};
self.fail(error)
}
}
}
fn extract_assertion_payload(
&self,
location: OpcodeLocation,
) -> Option<ResolvedAssertionPayload<F>> {
let (_, assertion_descriptor) =
self.assertion_payloads.iter().find(|(loc, _)| location == *loc)?;
let mut fields = Vec::new();
for expr in assertion_descriptor.payload.iter() {
match expr {
ExpressionOrMemory::Expression(expr) => {
let value = get_value(expr, &self.witness_map).ok()?;
fields.push(value);
}
ExpressionOrMemory::Memory(block_id) => {
let memory_block = self.block_solvers.get(block_id)?;
fields.extend(&memory_block.block_value);
}
}
}
let error_selector = ErrorSelector::new(assertion_descriptor.error_selector);
Some(ResolvedAssertionPayload::Raw(RawAssertionPayload {
selector: error_selector,
data: fields,
}))
}
/// Solves a Brillig Call opcode, which represents a call to an unconstrained function.
/// It first handles the predicate and returns zero values if the predicate is false.
/// Then it executes (or resumes execution) the Brillig function using a Brillig VM.
fn solve_brillig_call_opcode(
&mut self,
id: &BrilligFunctionId,
inputs: &'a [BrilligInputs<F>],
outputs: &[BrilligOutputs],
predicate: &Option<Expression<F>>,
) -> Result<Option<ForeignCallWaitInfo<F>>, OpcodeResolutionError<F>> {
let opcode_location =
ErrorLocation::Resolved(OpcodeLocation::Acir(self.instruction_pointer()));
if is_predicate_false(
&self.witness_map,
predicate,
self.backend.pedantic_solving(),
&opcode_location,
)? {
return BrilligSolver::<F, B>::zero_out_brillig_outputs(&mut self.witness_map, outputs)
.map(|_| None);
}
// If we're resuming execution after resolving a foreign call then
// there will be a cached `BrilligSolver` to avoid recomputation.
let mut solver: BrilligSolver<'_, F, B> = match self.brillig_solver.take() {
Some(solver) => solver,
None => BrilligSolver::new_call(
&self.witness_map,
&self.block_solvers,
inputs,
&self.unconstrained_functions[id.as_usize()].bytecode,
self.backend,
self.instruction_pointer,
*id,
self.profiling_active,
self.brillig_branch_to_feature_map,
)?,
};
// If we're fuzzing, we need to get the fuzzing trace on an error
let result = solver.solve().inspect_err(|_| {
if self.brillig_fuzzing_active {
self.brillig_fuzzing_trace = Some(solver.get_fuzzing_trace());
};
})?;
match result {
BrilligSolverStatus::ForeignCallWait(foreign_call) => {
// Cache the current state of the solver
self.brillig_solver = Some(solver);
Ok(Some(foreign_call))
}
BrilligSolverStatus::InProgress => {
unreachable!("Brillig solver still in progress")
}
BrilligSolverStatus::Finished => {
if self.brillig_fuzzing_active {
self.brillig_fuzzing_trace = Some(solver.get_fuzzing_trace());
}
// Write execution outputs
if self.profiling_active {
let profiling_info =
solver.finalize_with_profiling(&mut self.witness_map, outputs)?;
profiling_info.into_iter().for_each(|sample| {
let mapped =
sample.call_stack.into_iter().map(|loc| OpcodeLocation::Brillig {
acir_index: self.instruction_pointer,
brillig_index: loc,
});
self.profiling_samples.push(ProfilingSample {
call_stack: std::iter::once(OpcodeLocation::Acir(
self.instruction_pointer,
))
.chain(mapped)
.collect(),
brillig_function_id: Some(*id),
});
});
} else {
solver.finalize(&mut self.witness_map, outputs)?;
}
Ok(None)
}
}
}
// This function is used by the debugger
pub fn step_into_brillig(&mut self) -> StepResult<'a, F, B> {
let Opcode::BrilligCall { id, inputs, outputs, predicate } = self.current_opcode() else {
return StepResult::Status(self.solve_opcode());
};
let opcode_location =
ErrorLocation::Resolved(OpcodeLocation::Acir(self.instruction_pointer()));
let witness = &mut self.witness_map;
let should_skip = match is_predicate_false(
witness,
predicate,
self.backend.pedantic_solving(),
&opcode_location,
) {
Ok(result) => result,
Err(err) => return StepResult::Status(self.handle_opcode_resolution(Err(err))),
};
if should_skip {
let resolution = BrilligSolver::<F, B>::zero_out_brillig_outputs(witness, outputs);
return StepResult::Status(self.handle_opcode_resolution(resolution));
}
let solver = BrilligSolver::new_call(
witness,
&self.block_solvers,
inputs,
&self.unconstrained_functions[id.as_usize()].bytecode,
self.backend,
self.instruction_pointer,
*id,
self.profiling_active,
self.brillig_branch_to_feature_map,
);
match solver {
Ok(solver) => StepResult::IntoBrillig(solver),
Err(..) => StepResult::Status(self.handle_opcode_resolution(solver.map(|_| ()))),
}
}
// This function is used by the debugger
pub fn finish_brillig_with_solver(&mut self, solver: BrilligSolver<'a, F, B>) -> ACVMStatus<F> {
if !matches!(self.current_opcode(), Opcode::BrilligCall { .. }) {
unreachable!("Not executing a Brillig/BrilligCall opcode");
}
self.brillig_solver = Some(solver);
self.solve_opcode()
}
/// Defer execution of the ACIR call opcode to the caller, or finalize the execution.
/// 1. It first handles the predicate and return zero values if the predicate is false.
/// 2. If the results of the execution are not available, it issues a 'AcirCallWaitInfo'
/// to notify the caller that it (the caller) needs to execute the ACIR function.
/// 3. If the results are available, it updates the witness map and indicates that the opcode is solved.
pub fn solve_call_opcode(
&mut self,
id: &AcirFunctionId,
inputs: &[Witness],
outputs: &[Witness],
predicate: &Option<Expression<F>>,
) -> Result<Option<AcirCallWaitInfo<F>>, OpcodeResolutionError<F>> {
let opcode_location =
ErrorLocation::Resolved(OpcodeLocation::Acir(self.instruction_pointer()));
if *id == AcirFunctionId(0) {
return Err(OpcodeResolutionError::AcirMainCallAttempted { opcode_location });
}
if is_predicate_false(
&self.witness_map,
predicate,
self.backend.pedantic_solving(),
&opcode_location,
)? {
// Zero out the outputs if we have a false predicate
for output in outputs {
insert_value(output, F::zero(), &mut self.witness_map)?;
}
return Ok(None);
}
if self.acir_call_counter >= self.acir_call_results.len() {
let mut initial_witness = WitnessMap::default();
for (i, input_witness) in inputs.iter().enumerate() {
let input_value = *witness_to_value(&self.witness_map, *input_witness)?;
initial_witness.insert(Witness(i as u32), input_value);
}
return Ok(Some(AcirCallWaitInfo { id: *id, initial_witness }));
}
let result_values = &self.acir_call_results[self.acir_call_counter];
if outputs.len() != result_values.len() {
return Err(OpcodeResolutionError::AcirCallOutputsMismatch {
opcode_location,
results_size: result_values.len() as u32,
outputs_size: outputs.len() as u32,
});
}
for (output_witness, result_value) in outputs.iter().zip(result_values) {
insert_value(output_witness, *result_value, &mut self.witness_map)?;
}
self.acir_call_counter += 1;
Ok(None)
}
}
// Returns the concrete value for a particular witness
// If the witness has no assignment, then
// an error is returned
pub fn witness_to_value<F>(
initial_witness: &WitnessMap<F>,
witness: Witness,
) -> Result<&F, OpcodeResolutionError<F>> {
match initial_witness.get(&witness) {
Some(value) => Ok(value),
None => Err(OpcodeNotSolvable::MissingAssignment(witness.0).into()),
}
}
pub fn input_to_value<F: AcirField>(
initial_witness: &WitnessMap<F>,
input: FunctionInput<F>,
) -> Result<F, OpcodeResolutionError<F>> {
match input {
FunctionInput::Witness(witness) => {
let initial_value = *witness_to_value(initial_witness, witness)?;
Ok(initial_value)
}
FunctionInput::Constant(value) => Ok(value),
}
}
pub fn check_bit_size<F: AcirField>(
value: F,
num_bits: u32,
) -> Result<(), OpcodeResolutionError<F>> {
if value.num_bits() <= num_bits {
Ok(())
} else {
let value_num_bits = value.num_bits();
let value = value.to_string();
Err(OpcodeResolutionError::InvalidInputBitSize {
opcode_location: ErrorLocation::Unresolved,
invalid_input_bit_size: InvalidInputBitSize {
value,
value_num_bits,
max_bits: num_bits,
},
})
}
}
/// Returns the concrete value for a particular expression
/// If the value cannot be computed, it returns an 'OpcodeNotSolvable' error.
pub fn get_value<F: AcirField>(
expr: &Expression<F>,
initial_witness: &WitnessMap<F>,
) -> Result<F, OpcodeResolutionError<F>> {
let expr = ExpressionSolver::evaluate(expr, initial_witness);
match expr.to_const() {
Some(value) => Ok(*value),
None => Err(OpcodeResolutionError::OpcodeNotSolvable(
OpcodeNotSolvable::MissingAssignment(any_witness_from_expression(&expr).unwrap().0),
)),
}
}
/// Inserts `value` into the initial witness map under the index `witness`.
///
/// Returns an error if there was already a value in the map
/// which does not match the value that one is about to insert
pub fn insert_value<F: AcirField>(
witness: &Witness,
value_to_insert: F,
initial_witness: &mut WitnessMap<F>,
) -> Result<(), OpcodeResolutionError<F>> {
let optional_old_value = initial_witness.insert(*witness, value_to_insert);
let old_value = match optional_old_value {
Some(old_value) => old_value,
None => return Ok(()),
};
if old_value != value_to_insert {
return Err(OpcodeResolutionError::UnsatisfiedConstrain {
opcode_location: ErrorLocation::Unresolved,
payload: None,
});
}
Ok(())
}
// Returns one witness belonging to an expression, in no relevant order
// Returns None if the expression is const
// The function is used during partial witness generation to report unsolved witness
fn any_witness_from_expression<F>(expr: &Expression<F>) -> Option<Witness> {
if expr.linear_combinations.is_empty() {
if expr.mul_terms.is_empty() { None } else { Some(expr.mul_terms[0].1) }
} else {
Some(expr.linear_combinations[0].1)
}
}
/// Returns `Ok(true)` if the predicate is zero
/// A predicate is used to indicate whether we should skip a certain operation.
/// If we have a zero predicate it means the operation should be skipped.
///
/// Returns `Ok(false)` when the `predicate` is `None`.
pub(crate) fn is_predicate_false<F: AcirField>(
witness: &WitnessMap<F>,
predicate: &Option<Expression<F>>,
pedantic_solving: bool,
opcode_location: &ErrorLocation,
) -> Result<bool, OpcodeResolutionError<F>> {
match predicate {
Some(pred) => {
let pred_value = get_value(pred, witness)?;
let predicate_is_false = pred_value.is_zero();
if pedantic_solving {
// We expect that the predicate should resolve to either 0 or 1.
if !predicate_is_false && !pred_value.is_one() {
let opcode_location = *opcode_location;
return Err(OpcodeResolutionError::PredicateLargerThanOne {
opcode_location,
pred_value,
});
}
}
Ok(predicate_is_false)
}
// If the predicate is `None`, then we treat it as an unconditional `true`
None => Ok(false),
}
}
/// Encapsulates a request from the ACVM that encounters an [ACIR call opcode][brillig_vm::brillig::Opcode::Call]
/// where the result of the circuit execution has not yet been provided.
///
/// The caller must resolve this opcode externally based upon the information in the request.
#[derive(Debug, Clone, PartialEq)]
pub struct AcirCallWaitInfo<F> {
/// Index in the list of ACIR function's that should be called
pub id: AcirFunctionId,
/// Initial witness for the given circuit to be called
pub initial_witness: WitnessMap<F>,
}
#[cfg(test)]
mod tests {
use std::collections::BTreeMap;
use acir::{
FieldElement,
circuit::{
Opcode,
opcodes::{BlackBoxFuncCall, FunctionInput},
},
native_types::{Witness, WitnessMap},
};
use crate::pwg::{ACVM, ACVMStatus};
#[test]
fn solve_simple_circuit() {
let initial_witness = WitnessMap::from(BTreeMap::from_iter([
(Witness(1), FieldElement::from(1u128)),
(Witness(2), FieldElement::from(1u128)),
(Witness(3), FieldElement::from(2u128)),
]));
let backend = acvm_blackbox_solver::StubbedBlackBoxSolver(false);
let opcodes = vec![
Opcode::BlackBoxFuncCall(BlackBoxFuncCall::RANGE {
input: FunctionInput::Witness(Witness(1)),
num_bits: 32,
}),
Opcode::BlackBoxFuncCall(BlackBoxFuncCall::RANGE {
input: FunctionInput::Witness(Witness(2)),
num_bits: 32,
}),
Opcode::BlackBoxFuncCall(BlackBoxFuncCall::RANGE {
input: FunctionInput::Witness(Witness(3)),
num_bits: 32,
}),
Opcode::AssertZero(acir::native_types::Expression {
mul_terms: vec![],
linear_combinations: vec![
(FieldElement::from(2u128), Witness(1)),
(FieldElement::from(-1_i128), Witness(2)),
(FieldElement::from(-1_i128), Witness(4)),
],
q_c: FieldElement::from(0u128),
}),
Opcode::AssertZero(acir::native_types::Expression {
mul_terms: vec![(FieldElement::from(1u128), Witness(2), Witness(4))],
linear_combinations: vec![(FieldElement::from(1u128), Witness(5))],
q_c: FieldElement::from(-1_i128),
}),
];
let empty1 = Vec::new();
let empty2 = Vec::new();
let mut acvm = ACVM::new(&backend, &opcodes, initial_witness, &empty1, &empty2);
assert_eq!(acvm.solve(), ACVMStatus::Solved);
assert_eq!(acvm.witness_map()[&Witness(5)], FieldElement::from(0u128));
}
}