brillig/opcodes.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
use crate::black_box::BlackBoxOp;
use acir_field::AcirField;
use serde::{Deserialize, Serialize};
pub type Label = usize;
/// Represents an address in the VM's memory.
/// Supports both direct and relative addressing.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum MemoryAddress {
/// Specifies an exact index in the VM's memory
Direct(usize),
/// Specifies an index relative to the stack pointer.
///
/// It is resolved as the current stack pointer plus the offset stored here.
Relative(usize),
}
impl MemoryAddress {
pub fn direct(address: usize) -> Self {
MemoryAddress::Direct(address)
}
pub fn relative(offset: usize) -> Self {
MemoryAddress::Relative(offset)
}
pub fn unwrap_direct(self) -> usize {
match self {
MemoryAddress::Direct(address) => address,
MemoryAddress::Relative(_) => panic!("Expected direct memory address"),
}
}
pub fn unwrap_relative(self) -> usize {
match self {
MemoryAddress::Direct(_) => panic!("Expected relative memory address"),
MemoryAddress::Relative(offset) => offset,
}
}
pub fn to_usize(self) -> usize {
match self {
MemoryAddress::Direct(address) => address,
MemoryAddress::Relative(offset) => offset,
}
}
pub fn is_relative(&self) -> bool {
match self {
MemoryAddress::Relative(_) => true,
MemoryAddress::Direct(_) => false,
}
}
pub fn offset(&self, amount: usize) -> Self {
match self {
MemoryAddress::Direct(address) => MemoryAddress::Direct(address + amount),
MemoryAddress::Relative(offset) => MemoryAddress::Relative(offset + amount),
}
}
}
/// Describes the memory layout for an array/vector element
#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize, Hash)]
pub enum HeapValueType {
// A single field element is enough to represent the value with a given bit size
Simple(BitSize),
// The value read should be interpreted as a pointer to a heap array, which
// consists of a pointer to a slice of memory of size elements, and a
// reference count
Array { value_types: Vec<HeapValueType>, size: usize },
// The value read should be interpreted as a pointer to a heap vector, which
// consists of a pointer to a slice of memory, a number of elements in that
// slice, and a reference count
Vector { value_types: Vec<HeapValueType> },
}
impl HeapValueType {
pub fn all_simple(types: &[HeapValueType]) -> bool {
types.iter().all(|typ| matches!(typ, HeapValueType::Simple(_)))
}
pub fn field() -> HeapValueType {
HeapValueType::Simple(BitSize::Field)
}
}
/// A fixed-sized array starting from a Brillig memory location.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub struct HeapArray {
pub pointer: MemoryAddress,
pub size: usize,
}
impl Default for HeapArray {
fn default() -> Self {
Self { pointer: MemoryAddress::direct(0), size: 0 }
}
}
/// A memory-sized vector passed starting from a Brillig memory location and with a memory-held size
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub struct HeapVector {
pub pointer: MemoryAddress,
pub size: MemoryAddress,
}
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum IntegerBitSize {
U1,
U8,
U16,
U32,
U64,
U128,
}
impl From<IntegerBitSize> for u32 {
fn from(bit_size: IntegerBitSize) -> u32 {
match bit_size {
IntegerBitSize::U1 => 1,
IntegerBitSize::U8 => 8,
IntegerBitSize::U16 => 16,
IntegerBitSize::U32 => 32,
IntegerBitSize::U64 => 64,
IntegerBitSize::U128 => 128,
}
}
}
impl TryFrom<u32> for IntegerBitSize {
type Error = &'static str;
fn try_from(value: u32) -> Result<Self, Self::Error> {
match value {
1 => Ok(IntegerBitSize::U1),
8 => Ok(IntegerBitSize::U8),
16 => Ok(IntegerBitSize::U16),
32 => Ok(IntegerBitSize::U32),
64 => Ok(IntegerBitSize::U64),
128 => Ok(IntegerBitSize::U128),
_ => Err("Invalid bit size"),
}
}
}
impl std::fmt::Display for IntegerBitSize {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
IntegerBitSize::U1 => write!(f, "bool"),
IntegerBitSize::U8 => write!(f, "u8"),
IntegerBitSize::U16 => write!(f, "u16"),
IntegerBitSize::U32 => write!(f, "u32"),
IntegerBitSize::U64 => write!(f, "u64"),
IntegerBitSize::U128 => write!(f, "u128"),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum BitSize {
Field,
Integer(IntegerBitSize),
}
impl BitSize {
pub fn to_u32<F: AcirField>(self) -> u32 {
match self {
BitSize::Field => F::max_num_bits(),
BitSize::Integer(bit_size) => bit_size.into(),
}
}
pub fn try_from_u32<F: AcirField>(value: u32) -> Result<Self, &'static str> {
if value == F::max_num_bits() {
Ok(BitSize::Field)
} else {
Ok(BitSize::Integer(IntegerBitSize::try_from(value)?))
}
}
}
/// Lays out various ways an external foreign call's input and output data may be interpreted inside Brillig.
/// This data can either be an individual value or memory.
///
/// While we are usually agnostic to how memory is passed within Brillig,
/// this needs to be encoded somehow when dealing with an external system.
/// For simplicity, the extra type information is given right in the ForeignCall instructions.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum ValueOrArray {
/// A single value passed to or from an external call
/// It is an 'immediate' value - used without dereferencing.
/// For a foreign call input, the value is read directly from memory.
/// For a foreign call output, the value is written directly to memory.
MemoryAddress(MemoryAddress),
/// An array passed to or from an external call
/// In the case of a foreign call input, the array is read from this Brillig memory location + usize more cells.
/// In the case of a foreign call output, the array is written to this Brillig memory location with the usize being here just as a sanity check for the size write.
HeapArray(HeapArray),
/// A vector passed to or from an external call
/// In the case of a foreign call input, the vector is read from this Brillig memory location + as many cells as the 2nd address indicates.
/// In the case of a foreign call output, the vector is written to this Brillig memory location and as 'size' cells, with size being stored in the second address.
HeapVector(HeapVector),
}
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum BrilligOpcode<F> {
/// Takes the fields in addresses `lhs` and `rhs`
/// Performs the specified binary operation
/// and stores the value in the `destination` address.
BinaryFieldOp {
destination: MemoryAddress,
op: BinaryFieldOp,
lhs: MemoryAddress,
rhs: MemoryAddress,
},
/// Takes the `bit_size` size integers in addresses `lhs` and `rhs`
/// Performs the specified binary operation
/// and stores the value in the `destination` address.
BinaryIntOp {
destination: MemoryAddress,
op: BinaryIntOp,
bit_size: IntegerBitSize,
lhs: MemoryAddress,
rhs: MemoryAddress,
},
Not {
destination: MemoryAddress,
source: MemoryAddress,
bit_size: IntegerBitSize,
},
Cast {
destination: MemoryAddress,
source: MemoryAddress,
bit_size: BitSize,
},
/// Sets the program counter to the value of `location` if
/// the value at the `condition` address is zero.
JumpIfNot {
condition: MemoryAddress,
location: Label,
},
/// Sets the program counter to the value of `location`
/// If the value at `condition` is non-zero
JumpIf {
condition: MemoryAddress,
location: Label,
},
/// Sets the program counter to the value of `location`.
Jump {
location: Label,
},
/// Copies calldata after the offset to the specified address and length
CalldataCopy {
destination_address: MemoryAddress,
size_address: MemoryAddress,
offset_address: MemoryAddress,
},
/// We don't support dynamic jumps or calls
/// See <https://github.com/ethereum/aleth/issues/3404> for reasoning
///
/// Pushes the current program counter to the call stack as to set a return location.
/// Sets the program counter to the value of `location`.
Call {
location: Label,
},
/// Stores a constant `value` with a `bit_size` in the `destination` address.
Const {
destination: MemoryAddress,
bit_size: BitSize,
value: F,
},
/// Reads the address from `destination_pointer`, then stores a constant `value` with a `bit_size` at that address.
IndirectConst {
destination_pointer: MemoryAddress,
bit_size: BitSize,
value: F,
},
/// Pops the top element from the call stack, which represents the return location,
/// and sets the program counter to that value. This operation is used to return
/// from a function call.
Return,
/// Used to get data from an outside source.
/// Also referred to as an Oracle. However, we don't use that name as
/// this is intended for things like state tree reads, and shouldn't be confused
/// with e.g. blockchain price oracles.
ForeignCall {
/// Interpreted by caller context, ie this will have different meanings depending on
/// who the caller is.
function: String,
/// Destination addresses (may be single values or memory pointers).
destinations: Vec<ValueOrArray>,
/// Destination value types
destination_value_types: Vec<HeapValueType>,
/// Input addresses (may be single values or memory pointers).
inputs: Vec<ValueOrArray>,
/// Input value types (for heap allocated structures indicates how to
/// retrieve the elements)
input_value_types: Vec<HeapValueType>,
},
/// Moves the content in the `source` address to the `destination` address.
Mov {
destination: MemoryAddress,
source: MemoryAddress,
},
/// destination = condition > 0 ? source_a : source_b
ConditionalMov {
destination: MemoryAddress,
source_a: MemoryAddress,
source_b: MemoryAddress,
condition: MemoryAddress,
},
/// Reads the `source_pointer` to obtain a memory address, then retrieves the data
/// stored at that address and writes it to the `destination` address.
Load {
destination: MemoryAddress,
source_pointer: MemoryAddress,
},
/// Reads the `destination_pointer` to obtain a memory address, then stores the value
/// from the `source` address at that location.
Store {
destination_pointer: MemoryAddress,
source: MemoryAddress,
},
/// Native functions in the VM.
/// These are equivalent to the black box functions in ACIR.
BlackBox(BlackBoxOp),
/// Used to denote execution failure, halting the VM and returning data specified by a dynamically-sized vector.
Trap {
revert_data: HeapVector,
},
/// Halts execution and returns data specified by a dynamically-sized vector.
Stop {
return_data: HeapVector,
},
}
/// Binary fixed-length field expressions
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum BinaryFieldOp {
Add,
Sub,
Mul,
/// Field division
Div,
/// Integer division
IntegerDiv,
/// (==) equal
Equals,
/// (<) Field less than
LessThan,
/// (<=) field less or equal
LessThanEquals,
}
/// Binary fixed-length integer expressions
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum BinaryIntOp {
Add,
Sub,
Mul,
Div,
/// (==) equal
Equals,
/// (<) Field less than
LessThan,
/// (<=) field less or equal
LessThanEquals,
/// (&) Bitwise AND
And,
/// (|) Bitwise OR
Or,
/// (^) Bitwise XOR
Xor,
/// (<<) Shift left
Shl,
/// (>>) Shift right
Shr,
}
#[cfg(feature = "arb")]
mod tests {
use proptest::arbitrary::Arbitrary;
use proptest::prelude::*;
use super::{BitSize, HeapValueType};
// Need to define recursive strategy for `HeapValueType`
impl Arbitrary for HeapValueType {
type Parameters = ();
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
let leaf = any::<BitSize>().prop_map(HeapValueType::Simple);
leaf.prop_recursive(2, 3, 2, |inner| {
prop_oneof![
(prop::collection::vec(inner.clone(), 1..3), any::<usize>()).prop_map(
|(value_types, size)| { HeapValueType::Array { value_types, size } }
),
(prop::collection::vec(inner.clone(), 1..3))
.prop_map(|value_types| { HeapValueType::Vector { value_types } }),
]
})
.boxed()
}
}
}