brillig/opcodes.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
use crate::black_box::BlackBoxOp;
use acir_field::AcirField;
use serde::{Deserialize, Serialize};
/// Represents a program location (instruction index) used as a jump target.
pub type Label = usize;
/// Represents an address in the VM's memory.
/// Supports both direct and relative addressing.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum MemoryAddress {
/// Specifies an exact index in the VM's memory.
Direct(usize),
/// Specifies an index relative to the stack pointer.
///
/// It is resolved as the current stack pointer plus the offset stored here.
///
/// The stack pointer is stored in memory slot 0, so this address is resolved
/// by reading that slot and adding the offset to get the final memory address.
Relative(usize),
}
impl MemoryAddress {
/// Create a `Direct` address.
pub fn direct(address: usize) -> Self {
MemoryAddress::Direct(address)
}
/// Create a `Relative` address.
pub fn relative(offset: usize) -> Self {
MemoryAddress::Relative(offset)
}
/// Return the index in a `Direct` address.
///
/// Panics if it's `Relative`.
pub fn unwrap_direct(self) -> usize {
match self {
MemoryAddress::Direct(address) => address,
MemoryAddress::Relative(_) => panic!("Expected direct memory address"),
}
}
/// Return the index in a `Relative` address.
///
/// Panics if it's `Direct`.
pub fn unwrap_relative(self) -> usize {
match self {
MemoryAddress::Direct(_) => panic!("Expected relative memory address"),
MemoryAddress::Relative(offset) => offset,
}
}
/// Return the index in the address.
pub fn to_usize(self) -> usize {
match self {
MemoryAddress::Direct(address) => address,
MemoryAddress::Relative(offset) => offset,
}
}
pub fn is_relative(&self) -> bool {
match self {
MemoryAddress::Relative(_) => true,
MemoryAddress::Direct(_) => false,
}
}
pub fn is_direct(&self) -> bool {
!self.is_relative()
}
/// Offset the address by `amount`, while preserving its type.
pub fn offset(&self, amount: usize) -> Self {
match self {
MemoryAddress::Direct(address) => MemoryAddress::Direct(address + amount),
MemoryAddress::Relative(offset) => MemoryAddress::Relative(offset + amount),
}
}
}
impl std::fmt::Display for MemoryAddress {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
MemoryAddress::Direct(address) => write!(f, "@{address}"),
MemoryAddress::Relative(offset) => write!(f, "sp[{offset}]"),
}
}
}
/// Describes the memory layout for an array/vector element
#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize, Hash)]
pub enum HeapValueType {
/// A single field element is enough to represent the value with a given bit size.
Simple(BitSize),
/// The value read should be interpreted as a pointer to a [HeapArray], which
/// consists of a pointer to a slice of memory of size elements, and a
/// reference count, to avoid cloning arrays that are not shared.
Array { value_types: Vec<HeapValueType>, size: usize },
/// The value read should be interpreted as a pointer to a [HeapVector], which
/// consists of a pointer to a slice of memory, a number of elements in that
/// slice, and a reference count.
Vector { value_types: Vec<HeapValueType> },
}
impl HeapValueType {
/// Check that all types are `Simple`.
pub fn all_simple(types: &[HeapValueType]) -> bool {
types.iter().all(|typ| matches!(typ, HeapValueType::Simple(_)))
}
/// Create a `Simple` type to represent a `Field`.
pub fn field() -> HeapValueType {
HeapValueType::Simple(BitSize::Field)
}
/// Returns the total number of field elements required to represent this type in memory.
///
/// Returns `None` for `Vector`, as their size is not statically known.
pub fn flattened_size(&self) -> Option<usize> {
match self {
HeapValueType::Simple(_) => Some(1),
HeapValueType::Array { value_types, size } => {
let element_size =
value_types.iter().map(|t| t.flattened_size()).sum::<Option<usize>>();
// Multiply element size by number of elements.
element_size.map(|element_size| element_size * size)
}
HeapValueType::Vector { .. } => {
// Vectors are dynamic, so we cannot determine their size statically.
None
}
}
}
}
impl std::fmt::Display for HeapValueType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let write_types =
|f: &mut std::fmt::Formatter<'_>, value_types: &[HeapValueType]| -> std::fmt::Result {
if value_types.len() == 1 {
write!(f, "{}", value_types[0])?;
} else {
write!(f, "(")?;
for (index, value_type) in value_types.iter().enumerate() {
if index > 0 {
write!(f, ", ")?;
}
write!(f, "{value_type}")?;
}
write!(f, ")")?;
}
Ok(())
};
match self {
HeapValueType::Simple(bit_size) => {
write!(f, "{bit_size}")
}
HeapValueType::Array { value_types, size } => {
write!(f, "[")?;
write_types(f, value_types)?;
write!(f, "; {size}")?;
write!(f, "]")
}
HeapValueType::Vector { value_types } => {
write!(f, "&[")?;
write_types(f, value_types)?;
write!(f, "]")
}
}
}
}
/// A fixed-sized array starting from a Brillig memory location.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub struct HeapArray {
/// Pointer to a memory address which hold the address to the start of the items in the array.
///
/// That is to say, the address retrieved from the pointer doesn't need any more offsetting.
pub pointer: MemoryAddress,
/// Statically known size of the array.
pub size: usize,
}
impl Default for HeapArray {
fn default() -> Self {
Self { pointer: MemoryAddress::direct(0), size: 0 }
}
}
impl std::fmt::Display for HeapArray {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "[{}; {}]", self.pointer, self.size)
}
}
/// A memory-sized vector passed starting from a Brillig memory location and with a memory-held size.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub struct HeapVector {
/// Pointer to a memory address which hold the address to the start of the items in the vector.
///
/// That is to say, the address retrieved from the pointer doesn't need any more offsetting.
pub pointer: MemoryAddress,
/// Address to a memory slot holding the semantic length of the vector.
pub size: MemoryAddress,
}
impl std::fmt::Display for HeapVector {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "&[{}; {}]", self.pointer, self.size)
}
}
/// Represents the bit size of unsigned integer types in Brillig.
///
/// These correspond to the standard unsigned integer types, with U1 representing a boolean.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum IntegerBitSize {
U1,
U8,
U16,
U32,
U64,
U128,
}
impl From<IntegerBitSize> for u32 {
fn from(bit_size: IntegerBitSize) -> u32 {
match bit_size {
IntegerBitSize::U1 => 1,
IntegerBitSize::U8 => 8,
IntegerBitSize::U16 => 16,
IntegerBitSize::U32 => 32,
IntegerBitSize::U64 => 64,
IntegerBitSize::U128 => 128,
}
}
}
impl TryFrom<u32> for IntegerBitSize {
type Error = &'static str;
fn try_from(value: u32) -> Result<Self, Self::Error> {
match value {
1 => Ok(IntegerBitSize::U1),
8 => Ok(IntegerBitSize::U8),
16 => Ok(IntegerBitSize::U16),
32 => Ok(IntegerBitSize::U32),
64 => Ok(IntegerBitSize::U64),
128 => Ok(IntegerBitSize::U128),
_ => Err("Invalid bit size"),
}
}
}
impl std::fmt::Display for IntegerBitSize {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
IntegerBitSize::U1 => write!(f, "bool"),
IntegerBitSize::U8 => write!(f, "u8"),
IntegerBitSize::U16 => write!(f, "u16"),
IntegerBitSize::U32 => write!(f, "u32"),
IntegerBitSize::U64 => write!(f, "u64"),
IntegerBitSize::U128 => write!(f, "u128"),
}
}
}
/// Represents the bit size of values in Brillig.
///
/// Values can either be field elements (whose size depends on the field being used)
/// or fixed-size unsigned integers.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum BitSize {
Field,
Integer(IntegerBitSize),
}
impl BitSize {
/// Convert the bit size to a u32 value.
///
/// For field elements, returns the maximum number of bits in the field.
/// For integers, returns the bit size of the integer type.
pub fn to_u32<F: AcirField>(self) -> u32 {
match self {
BitSize::Field => F::max_num_bits(),
BitSize::Integer(bit_size) => bit_size.into(),
}
}
/// Try to create a BitSize from a u32 value.
///
/// If the value matches the field's maximum bit count, returns `BitSize::Field`.
/// Otherwise, attempts to interpret it as an integer bit size.
pub fn try_from_u32<F: AcirField>(value: u32) -> Result<Self, &'static str> {
if value == F::max_num_bits() {
Ok(BitSize::Field)
} else {
Ok(BitSize::Integer(IntegerBitSize::try_from(value)?))
}
}
}
impl std::fmt::Display for BitSize {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
BitSize::Field => write!(f, "field"),
BitSize::Integer(bit_size) => write!(f, "{bit_size}"),
}
}
}
/// Lays out various ways an external foreign call's input and output data may be interpreted inside Brillig.
/// This data can either be an individual value or memory.
///
/// While we are usually agnostic to how memory is passed within Brillig,
/// this needs to be encoded somehow when dealing with an external system.
/// For simplicity, the extra type information is given right in the `ForeignCall` instructions.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Copy, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum ValueOrArray {
/// A single value to be passed to or from an external call.
/// It is an 'immediate' value - used without dereferencing.
/// For a foreign call input, the value is read directly from memory.
/// For a foreign call output, the value is written directly to memory.
MemoryAddress(MemoryAddress),
/// An array to be passed to or from an external call.
/// In the case of a foreign call input, the array is read from this Brillig memory location + `size` more cells.
/// In the case of a foreign call output, the array is written to this Brillig memory location with the `size` being here just as a sanity check for the write size.
HeapArray(HeapArray),
/// A vector to be passed to or from an external call.
/// In the case of a foreign call input, the vector is read from this Brillig memory location + as many cells as the second address indicates.
/// In the case of a foreign call output, the vector is written to this Brillig memory location as 'size' cells, with size being stored in the second address.
HeapVector(HeapVector),
}
impl std::fmt::Display for ValueOrArray {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ValueOrArray::MemoryAddress(memory_address) => {
write!(f, "{memory_address}")
}
ValueOrArray::HeapArray(heap_array) => {
write!(f, "{heap_array}")
}
ValueOrArray::HeapVector(heap_vector) => {
write!(f, "{heap_vector}")
}
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum BrilligOpcode<F> {
/// Takes the fields in addresses `lhs` and `rhs`,
/// performs the specified binary operation,
/// and stores the value in the `destination` address.
BinaryFieldOp {
destination: MemoryAddress,
op: BinaryFieldOp,
lhs: MemoryAddress,
rhs: MemoryAddress,
},
/// Takes the `bit_size` size integers in addresses `lhs` and `rhs`,
/// performs the specified binary operation,
/// and stores the value in the `destination` address.
BinaryIntOp {
destination: MemoryAddress,
op: BinaryIntOp,
bit_size: IntegerBitSize,
lhs: MemoryAddress,
rhs: MemoryAddress,
},
/// Takes the value from the `source` address, inverts it,
/// and stores the value in the `destination` address.
Not { destination: MemoryAddress, source: MemoryAddress, bit_size: IntegerBitSize },
/// Takes the value from the `source` address,
/// casts it into the type indicated by `bit_size`,
/// and stores the value in the `destination` address.
Cast { destination: MemoryAddress, source: MemoryAddress, bit_size: BitSize },
/// Sets the program counter to the value of `location`
/// if the value at `condition` is non-zero.
JumpIf { condition: MemoryAddress, location: Label },
/// Sets the program counter to the value of `location`.
Jump { location: Label },
/// Copies calldata after the `offset_address` with length indicated by `size_address`
/// to the specified `destination_address`.
CalldataCopy {
destination_address: MemoryAddress,
size_address: MemoryAddress,
offset_address: MemoryAddress,
},
/// Pushes the current program counter to the call stack as to set a return location.
/// Sets the program counter to the value of `location`.
///
/// We don't support dynamic jumps or calls;
/// see <https://github.com/ethereum/aleth/issues/3404> for reasoning.
Call { location: Label },
/// Stores a constant `value` with a `bit_size` in the `destination` address.
Const { destination: MemoryAddress, bit_size: BitSize, value: F },
/// Reads the address from `destination_pointer`, then stores a constant `value` with a `bit_size` at that address.
IndirectConst { destination_pointer: MemoryAddress, bit_size: BitSize, value: F },
/// Pops the top element from the call stack, which represents the return location,
/// and sets the program counter to that value. This operation is used to return
/// from a function call.
Return,
/// Used to get data from an outside source.
///
/// Also referred to as an Oracle, intended for things like state tree reads;
/// it shouldn't be confused with e.g. blockchain price oracles.
ForeignCall {
/// Interpreted by caller context, ie. this will have different meanings depending on
/// who the caller is.
function: String,
/// Destination addresses (may be single values or memory pointers).
///
/// Output vectors are passed as a [ValueOrArray::MemoryAddress]. Since their size is not known up front,
/// we cannot allocate space for them on the heap. Instead, the VM is expected to write their data after
/// the current free memory pointer, and store the heap address into the destination.
destinations: Vec<ValueOrArray>,
/// Destination value types.
destination_value_types: Vec<HeapValueType>,
/// Input addresses (may be single values or memory pointers).
inputs: Vec<ValueOrArray>,
/// Input value types (for heap allocated structures indicates how to
/// retrieve the elements).
input_value_types: Vec<HeapValueType>,
},
/// Moves the content in the `source` address to the `destination` address.
Mov { destination: MemoryAddress, source: MemoryAddress },
/// If the value at `condition` is non-zero, moves the content in the `source_a`
/// address to the `destination` address, otherwise moves the content from the
/// `source_b` address instead.
///
/// `destination = condition > 0 ? source_a : source_b`
ConditionalMov {
destination: MemoryAddress,
source_a: MemoryAddress,
source_b: MemoryAddress,
condition: MemoryAddress,
},
/// Reads the `source_pointer` to obtain a memory address, then retrieves the data
/// stored at that address and writes it to the `destination` address.
Load { destination: MemoryAddress, source_pointer: MemoryAddress },
/// Reads the `destination_pointer` to obtain a memory address, then stores the value
/// from the `source` address at that location.
Store { destination_pointer: MemoryAddress, source: MemoryAddress },
/// Native functions in the VM.
/// These are equivalent to the black box functions in ACIR.
BlackBox(BlackBoxOp),
/// Used to denote execution failure, halting the VM and returning data specified by a dynamically-sized vector.
Trap { revert_data: HeapVector },
/// Halts execution and returns data specified by a dynamically-sized vector.
Stop { return_data: HeapVector },
}
impl<F: std::fmt::Display> std::fmt::Display for BrilligOpcode<F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
BrilligOpcode::BinaryFieldOp { destination, op, lhs, rhs } => {
write!(f, "{destination} = field {op} {lhs}, {rhs}")
}
BrilligOpcode::BinaryIntOp { destination, op, bit_size, lhs, rhs } => {
write!(f, "{destination} = {bit_size} {op} {lhs}, {rhs}")
}
BrilligOpcode::Not { destination, source, bit_size } => {
write!(f, "{destination} = {bit_size} not {source}")
}
BrilligOpcode::Cast { destination, source, bit_size } => {
write!(f, "{destination} = cast {source} to {bit_size}")
}
BrilligOpcode::JumpIf { condition, location } => {
write!(f, "jump if {condition} to {location}")
}
BrilligOpcode::Jump { location } => {
write!(f, "jump to {location}")
}
BrilligOpcode::CalldataCopy { destination_address, size_address, offset_address } => {
write!(
f,
"{destination_address} = calldata copy [{offset_address}; {size_address}]"
)
}
BrilligOpcode::Call { location } => {
write!(f, "call {location}")
}
BrilligOpcode::Const { destination, bit_size, value } => {
write!(f, "{destination} = const {bit_size} {value}")
}
BrilligOpcode::IndirectConst { destination_pointer, bit_size, value } => {
write!(f, "{destination_pointer} = indirect const {bit_size} {value}")
}
BrilligOpcode::Return => {
write!(f, "return")
}
BrilligOpcode::ForeignCall {
function,
destinations,
destination_value_types,
inputs,
input_value_types,
} => {
assert_eq!(destinations.len(), destination_value_types.len());
if !destinations.is_empty() {
for (index, (destination, destination_value_type)) in
destinations.iter().zip(destination_value_types).enumerate()
{
if index > 0 {
write!(f, ", ")?;
}
write!(f, "{destination}: {destination_value_type}")?;
}
write!(f, " = ")?;
}
write!(f, "foreign call {function}(")?;
assert_eq!(inputs.len(), input_value_types.len());
for (index, (input, input_value_type)) in
inputs.iter().zip(input_value_types).enumerate()
{
if index > 0 {
write!(f, ", ")?;
}
write!(f, "{input}: {input_value_type}")?;
}
write!(f, ")")?;
Ok(())
}
BrilligOpcode::Mov { destination, source } => {
write!(f, "{destination} = {source}")
}
BrilligOpcode::ConditionalMov { destination, source_a, source_b, condition } => {
write!(f, "{destination} = if {condition} then {source_a} else {source_b}")
}
BrilligOpcode::Load { destination, source_pointer } => {
write!(f, "{destination} = load {source_pointer}")
}
BrilligOpcode::Store { destination_pointer, source } => {
write!(f, "store {source} at {destination_pointer}")
}
BrilligOpcode::BlackBox(black_box_op) => {
write!(f, "{black_box_op}")
}
BrilligOpcode::Trap { revert_data } => {
write!(f, "trap {revert_data}")
}
BrilligOpcode::Stop { return_data } => {
write!(f, "stop {return_data}")
}
}
}
}
/// Binary operations on field elements.
///
/// Most operations work with field arithmetic, but some operations like
/// `IntegerDiv` interpret the field elements as unsigned integers for the purpose
/// of the operation (useful when field elements are used to represent integer values).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum BinaryFieldOp {
Add,
Sub,
Mul,
/// Field division (inverse multiplication in the field)
Div,
/// Unsigned integer division (treating field elements as unsigned integers)
IntegerDiv,
/// (==) Equal
Equals,
/// (<) Field less than
LessThan,
/// (<=) Field less or equal
LessThanEquals,
}
impl std::fmt::Display for BinaryFieldOp {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
BinaryFieldOp::Add => write!(f, "add"),
BinaryFieldOp::Sub => write!(f, "sub"),
BinaryFieldOp::Mul => write!(f, "mul"),
BinaryFieldOp::Div => write!(f, "field_div"),
BinaryFieldOp::IntegerDiv => write!(f, "int_div"),
BinaryFieldOp::Equals => write!(f, "eq"),
BinaryFieldOp::LessThan => write!(f, "lt"),
BinaryFieldOp::LessThanEquals => write!(f, "lt_eq"),
}
}
}
/// Binary fixed-length integer expressions
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize, Hash)]
#[cfg_attr(feature = "arb", derive(proptest_derive::Arbitrary))]
pub enum BinaryIntOp {
Add,
Sub,
Mul,
Div,
/// (==) Equal
Equals,
/// (<) Integer less than
LessThan,
/// (<=) Integer less or equal
LessThanEquals,
/// (&) Bitwise AND
And,
/// (|) Bitwise OR
Or,
/// (^) Bitwise XOR
Xor,
/// (<<) Shift left
Shl,
/// (>>) Shift right
Shr,
}
impl std::fmt::Display for BinaryIntOp {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
BinaryIntOp::Add => write!(f, "add"),
BinaryIntOp::Sub => write!(f, "sub"),
BinaryIntOp::Mul => write!(f, "mul"),
BinaryIntOp::Div => write!(f, "div"),
BinaryIntOp::Equals => write!(f, "eq"),
BinaryIntOp::LessThan => write!(f, "lt"),
BinaryIntOp::LessThanEquals => write!(f, "lt_eq"),
BinaryIntOp::And => write!(f, "and"),
BinaryIntOp::Or => write!(f, "or"),
BinaryIntOp::Xor => write!(f, "xor"),
BinaryIntOp::Shl => write!(f, "shl"),
BinaryIntOp::Shr => write!(f, "shr"),
}
}
}
#[cfg(test)]
mod tests {
use super::{BitSize, IntegerBitSize};
use acir_field::FieldElement;
/// Test that IntegerBitSize round trips correctly through From/TryFrom u32
#[test]
fn test_integer_bitsize_roundtrip() {
let integer_sizes = [
IntegerBitSize::U1,
IntegerBitSize::U8,
IntegerBitSize::U16,
IntegerBitSize::U32,
IntegerBitSize::U64,
IntegerBitSize::U128,
];
for int_size in integer_sizes {
// Convert to u32 using From trait
let as_u32: u32 = int_size.into();
// Convert back using TryFrom trait
let roundtrip = IntegerBitSize::try_from(as_u32)
.expect("Should successfully convert back from u32");
assert_eq!(
int_size, roundtrip,
"IntegerBitSize::{int_size} should roundtrip through From<IntegerBitSize> for u32 and TryFrom<u32>"
);
}
}
#[test]
fn test_integer_bitsize_values() {
// Verify the actual u32 values returned by From trait
assert_eq!(u32::from(IntegerBitSize::U1), 1);
assert_eq!(u32::from(IntegerBitSize::U8), 8);
assert_eq!(u32::from(IntegerBitSize::U16), 16);
assert_eq!(u32::from(IntegerBitSize::U32), 32);
assert_eq!(u32::from(IntegerBitSize::U64), 64);
assert_eq!(u32::from(IntegerBitSize::U128), 128);
}
#[test]
fn test_integer_bitsize_try_from_invalid() {
// Test that invalid bit sizes return an error
assert!(IntegerBitSize::try_from(0).is_err());
assert!(IntegerBitSize::try_from(2).is_err());
assert!(IntegerBitSize::try_from(7).is_err());
assert!(IntegerBitSize::try_from(15).is_err());
assert!(IntegerBitSize::try_from(31).is_err());
assert!(IntegerBitSize::try_from(63).is_err());
assert!(IntegerBitSize::try_from(127).is_err());
assert!(IntegerBitSize::try_from(129).is_err());
assert!(IntegerBitSize::try_from(256).is_err());
}
/// Test that BitSize roundtrips correctly through to_u32/try_from_u32
#[test]
fn test_bitsize_roundtrip() {
// Test all integer bit sizes
let integer_sizes = [
IntegerBitSize::U1,
IntegerBitSize::U8,
IntegerBitSize::U16,
IntegerBitSize::U32,
IntegerBitSize::U64,
IntegerBitSize::U128,
];
for int_size in integer_sizes {
let bit_size = BitSize::Integer(int_size);
let as_u32 = bit_size.to_u32::<FieldElement>();
let roundtrip = BitSize::try_from_u32::<FieldElement>(as_u32)
.expect("Should successfully convert back from u32");
assert_eq!(
bit_size, roundtrip,
"BitSize::Integer({int_size}) should roundtrip through to_u32/try_from_u32"
);
}
// Test Field type
let field_bit_size = BitSize::Field;
let as_u32 = field_bit_size.to_u32::<FieldElement>();
let roundtrip = BitSize::try_from_u32::<FieldElement>(as_u32)
.expect("Should successfully convert Field back from u32");
assert_eq!(
field_bit_size, roundtrip,
"BitSize::Field should roundtrip through to_u32/try_from_u32"
);
}
#[test]
fn test_bitsize_to_u32_values_integers() {
// Verify the actual u32 values returned for integer types
assert_eq!(BitSize::Integer(IntegerBitSize::U1).to_u32::<FieldElement>(), 1);
assert_eq!(BitSize::Integer(IntegerBitSize::U8).to_u32::<FieldElement>(), 8);
assert_eq!(BitSize::Integer(IntegerBitSize::U16).to_u32::<FieldElement>(), 16);
assert_eq!(BitSize::Integer(IntegerBitSize::U32).to_u32::<FieldElement>(), 32);
assert_eq!(BitSize::Integer(IntegerBitSize::U64).to_u32::<FieldElement>(), 64);
assert_eq!(BitSize::Integer(IntegerBitSize::U128).to_u32::<FieldElement>(), 128);
}
#[test]
#[cfg(feature = "bn254")]
fn test_bitsize_to_u32_field_bn254() {
// Field type returns 254 bits for bn254
assert_eq!(BitSize::Field.to_u32::<FieldElement>(), 254);
}
#[test]
#[cfg(feature = "bls12_381")]
fn test_bitsize_to_u32_field_bls12_381() {
// Field type returns 255 bits for bls12_381
assert_eq!(BitSize::Field.to_u32::<FieldElement>(), 255);
}
#[test]
fn test_bitsize_try_from_u32_invalid() {
// Test that invalid bit sizes return an error
assert!(BitSize::try_from_u32::<FieldElement>(2).is_err());
assert!(BitSize::try_from_u32::<FieldElement>(7).is_err());
assert!(BitSize::try_from_u32::<FieldElement>(0).is_err());
assert!(BitSize::try_from_u32::<FieldElement>(256).is_err());
}
}
#[cfg(feature = "arb")]
mod prop_tests {
use proptest::arbitrary::Arbitrary;
use proptest::prelude::*;
use super::{BitSize, HeapValueType};
// Need to define recursive strategy for `HeapValueType`
impl Arbitrary for HeapValueType {
type Parameters = ();
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
let leaf = any::<BitSize>().prop_map(HeapValueType::Simple);
leaf.prop_recursive(2, 3, 2, |inner| {
prop_oneof![
(prop::collection::vec(inner.clone(), 1..3), any::<usize>()).prop_map(
|(value_types, size)| { HeapValueType::Array { value_types, size } }
),
(prop::collection::vec(inner.clone(), 1..3))
.prop_map(|value_types| { HeapValueType::Vector { value_types } }),
]
})
.boxed()
}
}
}