brillig_vm/foreign_call.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
//! Implementation for [foreign calls][acir::brillig::Opcode::ForeignCall]
use acir::{
    AcirField,
    brillig::{
        BitSize, ForeignCallParam, HeapArray, HeapValueType, HeapVector, IntegerBitSize,
        MemoryAddress, ValueOrArray,
    },
};
use acvm_blackbox_solver::BlackBoxFunctionSolver;
use crate::{
    MemoryValue, VM, VMStatus,
    memory::{ArrayAddress, VectorAddress},
};
impl<F: AcirField, B: BlackBoxFunctionSolver<F>> VM<'_, F, B> {
    /// Handles the execution of a single [ForeignCall opcode][acir::brillig::Opcode::ForeignCall].
    ///
    /// This method performs the following steps:
    /// 1. Checks if the foreign call results are already available. If not, it resolves the input
    ///    values from memory and pauses execution by returning `VMStatus::ForeignCallWait`.
    ///    For vectors, the preceding `u32` length field is used to truncate the slice input to its semantic length.
    /// 2. If results are available, it writes them to memory, ensuring that the returned data
    ///    matches the expected types and sizes. Nested arrays are reconstructed from flat
    ///    outputs when necessary. Nested vectors are an unsupported return type and will trigger an error.
    /// 3. Increments the foreign call counter and advances the program counter.
    ///
    /// # Parameters
    /// The borrowed fields of a [ForeignCall opcode][acir::brillig::Opcode::ForeignCall].
    /// They are listed again below:
    /// - `function`: Name of the foreign function being called.
    /// - `destinations`: Pointers or heap structures where the return values will be written.
    /// - `destination_value_types`: Expected type layout for each destination.
    /// - `inputs`: Pointers or heap structures representing the inputs for the foreign call.
    /// - `input_value_types`: Expected type layout for each input.
    ///
    /// # Returns
    /// - [VMStatus] indicating the next state of the VM:
    ///   - [VMStatus::ForeignCallWait] if the results are not yet available.
    ///   - [VMStatus::Finished] or [VMStatus::Failure] depending on whether writing the results succeeded.
    ///
    /// # Panics
    /// - If `inputs` and `input_value_types` lengths do not match.
    /// - If `destinations` and `destination_value_types` lengths do not match.
    pub(super) fn process_foreign_call(
        &mut self,
        function: &str,
        destinations: &[ValueOrArray],
        destination_value_types: &[HeapValueType],
        inputs: &[ValueOrArray],
        input_value_types: &[HeapValueType],
    ) -> &VMStatus<F> {
        assert_eq!(inputs.len(), input_value_types.len());
        assert_eq!(destinations.len(), destination_value_types.len());
        if !self.has_unprocessed_foreign_call_result() {
            // When this opcode is called, it is possible that the results of a foreign call are
            // not yet known (not enough entries in `foreign_call_results`).
            // If that is the case, just resolve the inputs and pause the VM with a status
            // (VMStatus::ForeignCallWait) that communicates the foreign function name and
            // resolved inputs back to the caller. Once the caller pushes to `foreign_call_results`,
            // they can then make another call to the VM that starts at this opcode
            // but has the necessary results to proceed with execution.
            // With slices we might have more items in the HeapVector than the semantic length
            // indicated by the field preceding the pointer to the vector in the inputs.
            // This happens when SSA merges slices of different length, which can result in
            // a vector that has room for the longer of the two, partially filled with items
            // from the shorter. There are ways to deal with this on the receiver side,
            // but it is cumbersome, and the cleanest solution is not to send the extra empty
            // items at all. To do this, however, we need infer which input is the vector length.
            let mut vector_length: Option<usize> = None;
            let resolved_inputs = inputs
                .iter()
                .zip(input_value_types)
                .map(|(input, input_type)| {
                    let mut input = self.get_memory_values(*input, input_type);
                    // Truncate slices to their semantic length, which we remember from the preceding field.
                    match input_type {
                        HeapValueType::Simple(BitSize::Integer(IntegerBitSize::U32)) => {
                            // If we have a single u32 we may have a slice representation, so store this input.
                            // On the next iteration, if we have a vector then we know we have the dynamic length
                            // for that slice.
                            let ForeignCallParam::Single(length) = input else {
                                unreachable!("expected u32; got {input:?}");
                            };
                            vector_length = Some(length.to_u128() as usize);
                        }
                        HeapValueType::Vector { value_types } => {
                            if let Some(length) = vector_length {
                                let type_size = vector_element_size(value_types);
                                let mut fields = input.fields();
                                fields.truncate(length * type_size);
                                input = ForeignCallParam::Array(fields);
                            }
                            vector_length = None;
                        }
                        _ => {
                            // Otherwise we are not dealing with a u32 followed by a vector.
                            vector_length = None;
                        }
                    }
                    input
                })
                .collect::<Vec<_>>();
            return self.wait_for_foreign_call(function.to_owned(), resolved_inputs);
        }
        let write_result = self.write_foreign_call_result(
            destinations,
            destination_value_types,
            self.foreign_call_counter,
        );
        if let Err(e) = write_result {
            return self.fail(e);
        }
        // Mark the foreign call result as processed.
        self.foreign_call_counter += 1;
        self.increment_program_counter()
    }
    /// Get input data from memory to pass to foreign calls.
    fn get_memory_values(
        &self,
        input: ValueOrArray,
        value_type: &HeapValueType,
    ) -> ForeignCallParam<F> {
        match (input, value_type) {
            (ValueOrArray::MemoryAddress(value_addr), HeapValueType::Simple(_)) => {
                ForeignCallParam::Single(self.memory.read(value_addr).to_field())
            }
            (
                ValueOrArray::HeapArray(HeapArray { pointer, size }),
                HeapValueType::Array { value_types, size: type_size },
            ) if *type_size == size => {
                let start = self.memory.read_ref(pointer);
                self.read_slice_of_values_from_memory(start, size, value_types)
                    .into_iter()
                    .map(|mem_value| mem_value.to_field())
                    .collect::<Vec<_>>()
                    .into()
            }
            (
                ValueOrArray::HeapVector(HeapVector { pointer, size: size_addr }),
                HeapValueType::Vector { value_types },
            ) => {
                let start = self.memory.read_ref(pointer);
                let size = self.memory.read(size_addr).to_usize();
                self.read_slice_of_values_from_memory(start, size, value_types)
                    .into_iter()
                    .map(|mem_value| mem_value.to_field())
                    .collect::<Vec<_>>()
                    .into()
            }
            _ => {
                unreachable!("Unexpected value type {value_type:?} for input {input:?}");
            }
        }
    }
    /// Reads an array/vector from memory but recursively reads pointers to
    /// nested arrays/vectors according to the sequence of value types.
    fn read_slice_of_values_from_memory(
        &self,
        start: MemoryAddress,
        size: usize,
        value_types: &[HeapValueType],
    ) -> Vec<MemoryValue<F>> {
        assert!(start.is_direct(), "read_slice_of_values_from_memory requires direct addresses");
        if HeapValueType::all_simple(value_types) {
            self.memory.read_slice(start, size).to_vec()
        } else {
            // Check that the sequence of value types fit an integer number of
            // times inside the given size.
            assert!(
                0 == size % value_types.len(),
                "array/vector does not contain a whole number of elements"
            );
            // We want to send vectors to foreign functions truncated to their semantic length.
            let mut vector_length: Option<usize> = None;
            (0..size)
                .zip(value_types.iter().cycle())
                .map(|(i, value_type)| {
                    let value_address = start.offset(i);
                    let values = match value_type {
                        HeapValueType::Simple(_) => {
                            vec![self.memory.read(value_address)]
                        }
                        HeapValueType::Array { value_types, size } => {
                            let array_address =
                                ArrayAddress::from(self.memory.read_ref(value_address));
                            self.read_slice_of_values_from_memory(
                                array_address.items_start(),
                                *size,
                                value_types,
                            )
                        }
                        HeapValueType::Vector { value_types } => {
                            let vector_address =
                                VectorAddress::from(self.memory.read_ref(value_address));
                            let side_addr = vector_address.size_addr();
                            let items_start = vector_address.items_start();
                            let vector_size = self.memory.read(side_addr).to_usize();
                            self.read_slice_of_values_from_memory(
                                items_start,
                                vector_size,
                                value_types,
                            )
                        }
                    };
                    (value_type, values)
                })
                .flat_map(|(value_type, mut values)| {
                    match value_type {
                        HeapValueType::Simple(BitSize::Integer(IntegerBitSize::U32)) => {
                            vector_length = Some(values[0].to_usize());
                        }
                        HeapValueType::Vector { value_types } => {
                            if let Some(length) = vector_length {
                                let type_size = vector_element_size(value_types);
                                values.truncate(length * type_size);
                            }
                            vector_length = None;
                        }
                        _ => {
                            // Otherwise we are not dealing with a u32 followed by a vector.
                            vector_length = None;
                        }
                    }
                    values
                })
                .collect::<Vec<_>>()
        }
    }
    /// Sets the status of the VM to `ForeignCallWait`.
    /// Indicating that the VM is now waiting for a foreign call to be resolved.
    fn wait_for_foreign_call(
        &mut self,
        function: String,
        inputs: Vec<ForeignCallParam<F>>,
    ) -> &VMStatus<F> {
        self.status(VMStatus::ForeignCallWait { function, inputs })
    }
    /// Write a foreign call's results to the VM memory.
    ///
    /// We match the expected types with the actual results.
    /// However foreign call results do not support nested structures:
    /// They are either a single integer value or a vector of integer values (field elements).
    /// Therefore, nested arrays returned from foreign call results are flattened.
    /// If the expected array sizes do not match the actual size, we reconstruct the nested
    /// structure from the flat output array.
    fn write_foreign_call_result(
        &mut self,
        destinations: &[ValueOrArray],
        destination_value_types: &[HeapValueType],
        foreign_call_index: usize,
    ) -> Result<(), String> {
        // Take ownership of values to allow calling mutating methods on self.
        let values = std::mem::take(&mut self.foreign_call_results[foreign_call_index].values);
        if destinations.len() != values.len() {
            return Err(format!(
                "{} output values were provided as a foreign call result for {} destination slots",
                values.len(),
                destinations.len()
            ));
        }
        debug_assert_eq!(
            destinations.len(),
            destination_value_types.len(),
            "Number of destinations must match number of value types",
        );
        for ((destination, value_type), output) in
            destinations.iter().zip(destination_value_types).zip(&values)
        {
            match (destination, value_type) {
                (ValueOrArray::MemoryAddress(value_addr), HeapValueType::Simple(bit_size)) => {
                    let output_fields = output.fields();
                    if value_type
                        .flattened_size()
                        .is_some_and(|flattened_size| output_fields.len() != flattened_size)
                    {
                        return Err(format!(
                            "Foreign call return value does not match expected size. Expected {} but got {}",
                            value_type.flattened_size().unwrap(),
                            output_fields.len(),
                        ));
                    }
                    match output {
                        ForeignCallParam::Single(value) => {
                            self.write_value_to_memory(*value_addr, value, *bit_size)?;
                        }
                        _ => {
                            return Err(format!(
                                "Function result size does not match brillig bytecode. Expected 1 result but got {output:?}"
                            ));
                        }
                    }
                }
                (
                    ValueOrArray::HeapArray(HeapArray { pointer, size }),
                    HeapValueType::Array { value_types, size: type_size },
                ) => {
                    if size != type_size {
                        return Err(format!(
                            "Destination array size of {size} does not match the type size of {type_size}"
                        ));
                    }
                    let output_fields = output.fields();
                    if value_type
                        .flattened_size()
                        .is_some_and(|flattened_size| output_fields.len() != flattened_size)
                    {
                        return Err(format!(
                            "Foreign call return value does not match expected size. Expected {} but got {}",
                            value_type.flattened_size().unwrap(),
                            output_fields.len(),
                        ));
                    }
                    if HeapValueType::all_simple(value_types) {
                        let ForeignCallParam::Array(values) = output else {
                            return Err("Foreign call returned a single value for an array type"
                                .to_string());
                        };
                        if values.len() != *size {
                            // foreign call returning flattened values into a nested type, so the sizes do not match
                            let destination = self.memory.read_ref(*pointer);
                            let mut flatten_values_idx = 0; //index of values read from flatten_values
                            self.write_flattened_values_to_memory(
                                destination,
                                &output_fields,
                                &mut flatten_values_idx,
                                value_type,
                            )?;
                            // Should be caught earlier but we want to be explicit.
                            debug_assert_eq!(
                                flatten_values_idx,
                                output_fields.len(),
                                "Not all values were written to memory"
                            );
                        } else {
                            self.write_values_to_memory(*pointer, values, value_types)?;
                        }
                    } else {
                        // foreign call returning flattened values into a nested type, so the sizes do not match
                        let destination = self.memory.read_ref(*pointer);
                        let mut flatten_values_idx = 0; //index of values read from flatten_values
                        self.write_flattened_values_to_memory(
                            destination,
                            &output_fields,
                            &mut flatten_values_idx,
                            value_type,
                        )?;
                        debug_assert_eq!(
                            flatten_values_idx,
                            output_fields.len(),
                            "Not all values were written to memory"
                        );
                    }
                }
                (
                    ValueOrArray::HeapVector(HeapVector { pointer, size: size_addr }),
                    HeapValueType::Vector { value_types },
                ) => {
                    if HeapValueType::all_simple(value_types) {
                        let ForeignCallParam::Array(values) = output else {
                            return Err("Foreign call returned a single value for an vector type"
                                .to_string());
                        };
                        if values.len() % value_types.len() != 0 {
                            return Err(
                                "Returned data does not match vector element size".to_string()
                            );
                        }
                        // Set the size in the size address
                        self.memory.write(*size_addr, values.len().into());
                        self.write_values_to_memory(*pointer, values, value_types)?;
                    } else {
                        unimplemented!("deflattening heap vectors from foreign calls");
                    }
                }
                _ => {
                    return Err(format!(
                        "Unexpected value type {value_type:?} for destination {destination:?}"
                    ));
                }
            }
        }
        self.foreign_call_results[foreign_call_index].values = values;
        Ok(())
    }
    /// Write a single numeric value to the destination address, ensuring that the bit size matches the expectation.
    fn write_value_to_memory(
        &mut self,
        destination: MemoryAddress,
        value: &F,
        value_bit_size: BitSize,
    ) -> Result<(), String> {
        let memory_value = MemoryValue::new_checked(*value, value_bit_size);
        if let Some(memory_value) = memory_value {
            self.memory.write(destination, memory_value);
        } else {
            return Err(format!(
                "Foreign call result value {value} does not fit in bit size {value_bit_size:?}"
            ));
        }
        Ok(())
    }
    /// Write an array or slice to the destination under the pointer.
    fn write_values_to_memory(
        &mut self,
        pointer: MemoryAddress,
        values: &[F],
        value_types: &[HeapValueType],
    ) -> Result<(), String> {
        let bit_sizes_iterator = value_types
            .iter()
            .map(|typ| match typ {
                HeapValueType::Simple(bit_size) => *bit_size,
                _ => unreachable!("Expected simple value type"),
            })
            .cycle();
        // Convert the destination pointer to an address.
        let destination = self.memory.read_ref(pointer);
        // Write to the destination memory.
        let memory_values: Option<Vec<_>> = values
            .iter()
            .zip(bit_sizes_iterator)
            .map(|(value, bit_size)| MemoryValue::new_checked(*value, bit_size))
            .collect();
        if let Some(memory_values) = memory_values {
            self.memory.write_slice(destination, &memory_values);
        } else {
            return Err(format!(
                "Foreign call result values {values:?} do not match expected bit sizes",
            ));
        }
        Ok(())
    }
    /// Writes flattened values to memory, using the provided type.
    ///
    /// The method calls itself recursively in order to work with recursive types (nested arrays).
    /// `values_idx` is the current index in the `values` vector and is incremented every time
    /// a value is written to memory.
    fn write_flattened_values_to_memory(
        &mut self,
        destination: MemoryAddress,
        values: &Vec<F>,
        values_idx: &mut usize,
        value_type: &HeapValueType,
    ) -> Result<(), String> {
        assert!(
            destination.is_direct(),
            "write_flattened_values_to_memory requires direct addresses"
        );
        match value_type {
            HeapValueType::Simple(bit_size) => {
                self.write_value_to_memory(destination, &values[*values_idx], *bit_size)?;
                *values_idx += 1;
                Ok(())
            }
            HeapValueType::Array { value_types, size } => {
                let mut current_pointer = destination;
                for _ in 0..*size {
                    for typ in value_types {
                        match typ {
                            HeapValueType::Simple(bit_size) => {
                                self.write_value_to_memory(
                                    current_pointer,
                                    &values[*values_idx],
                                    *bit_size,
                                )?;
                                *values_idx += 1;
                                current_pointer = current_pointer.offset(1);
                            }
                            HeapValueType::Array { .. } => {
                                // The next memory destination is an array, somewhere else in memory where the pointer points to.
                                let destination =
                                    ArrayAddress::from(self.memory.read_ref(current_pointer));
                                self.write_flattened_values_to_memory(
                                    destination.items_start(),
                                    values,
                                    values_idx,
                                    typ,
                                )?;
                                // Move on to the next slot in *this* array.
                                current_pointer = current_pointer.offset(1);
                            }
                            HeapValueType::Vector { .. } => {
                                return Err(format!(
                                    "Unsupported returned type in foreign calls {typ:?}"
                                ));
                            }
                        }
                    }
                }
                Ok(())
            }
            HeapValueType::Vector { .. } => {
                Err(format!("Unsupported returned type in foreign calls {value_type:?}"))
            }
        }
    }
}
/// Returns the total number of field elements required to represent the elements in the vector in memory.
///
/// Panics if the vector contains nested vectors. Such types are not supported and are rejected by the frontend.
fn vector_element_size(value_types: &[HeapValueType]) -> usize {
    value_types
        .iter()
        .map(|typ| {
            typ.flattened_size()
                .unwrap_or_else(|| panic!("unexpected nested dynamic element type: {typ:?}"))
        })
        .sum()
}