brillig_vm/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#![forbid(unsafe_code)]
#![cfg_attr(not(test), warn(unused_crate_dependencies, unused_extern_crates))]

//! The Brillig VM is a specialized VM which allows the [ACVM][acvm] to perform custom non-determinism.
//!
//! Brillig bytecode is distinct from regular [ACIR][acir] in that it does not generate constraints.
//!
//! [acir]: https://crates.io/crates/acir
//! [acvm]: https://crates.io/crates/acvm
use acir::AcirField;
use acir::brillig::{
    BinaryFieldOp, BinaryIntOp, ForeignCallParam, ForeignCallResult, IntegerBitSize, MemoryAddress,
    Opcode,
};
use acvm_blackbox_solver::BlackBoxFunctionSolver;
use arithmetic::{BrilligArithmeticError, evaluate_binary_field_op, evaluate_binary_int_op};
use black_box::evaluate_black_box;

// Re-export `brillig`.
pub use acir::brillig;
use memory::MemoryTypeError;
pub use memory::{MEMORY_ADDRESSING_BIT_SIZE, Memory, MemoryValue, STACK_POINTER_ADDRESS, offsets};

pub use crate::fuzzing::BranchToFeatureMap;
use crate::fuzzing::FuzzingTrace;

mod arithmetic;
mod black_box;
mod cast;
mod foreign_call;
pub mod fuzzing;
mod memory;

/// The error call stack contains the opcode indexes of the call stack at the time of failure, plus the index of the opcode that failed.
pub type ErrorCallStack = Vec<usize>;

/// Represents the reason why the Brillig VM failed during execution.
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum FailureReason {
    /// A trap was encountered, which indicates an explicit failure from within the VM program.
    ///
    /// A trap is triggered explicitly by the [trap opcode][Opcode::Trap].
    /// The revert data is referenced by the offset and size in the VM memory.
    Trap {
        /// Offset in memory where the revert data begins.
        revert_data_offset: usize,
        /// Size of the revert data.
        revert_data_size: usize,
    },
    /// A runtime failure during execution.
    /// This error is triggered by all opcodes aside the [trap opcode][Opcode::Trap].
    /// For example, a [binary operation][Opcode::BinaryIntOp] can trigger a division by zero error.
    RuntimeError { message: String },
}

/// Represents the current execution status of the Brillig VM.
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum VMStatus<F> {
    /// The VM has completed execution successfully.
    /// The output of the program is stored in the VM memory and can be accessed via the provided offset and size.
    Finished {
        /// Offset in memory where the return data begins.
        return_data_offset: usize,
        /// Size of the return data.
        return_data_size: usize,
    },
    /// The VM is still in progress and has not yet completed execution.
    /// This is used when simulating execution.
    InProgress,
    /// The VM encountered a failure and halted execution.
    Failure {
        /// The reason for the failure.
        reason: FailureReason,
        /// The call stack at the time the failure occurred, useful for debugging nested calls.
        call_stack: ErrorCallStack,
    },
    /// The VM process is not solvable as a [foreign call][Opcode::ForeignCall] has been
    /// reached where the outputs are yet to be resolved.
    ///
    /// The caller should interpret the information returned to compute a [ForeignCallResult]
    /// and update the Brillig process. The VM can then be restarted to fully solve the previously
    /// unresolved foreign call as well as the remaining Brillig opcodes.
    ForeignCallWait {
        /// Interpreted by simulator context.
        function: String,
        /// Input values.
        /// Each input can be either a single value or an array of values read from a memory pointer.
        inputs: Vec<ForeignCallParam<F>>,
    },
}

/// The position of an opcode that is currently being executed in the bytecode.
pub type OpcodePosition = usize;

/// The position of the next opcode that will be executed in the bytecode,
/// or an id of a specific state produced by the opcode.
pub type NextOpcodePositionOrState = usize;

/// A sample for an executed opcode.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct BrilligProfilingSample {
    /// The call stack when processing a given opcode.
    pub call_stack: Vec<usize>,
}

/// All samples for each opcode that was executed.
pub type BrilligProfilingSamples = Vec<BrilligProfilingSample>;

#[derive(Debug, PartialEq, Eq, Clone)]
/// VM encapsulates the state of the Brillig VM during execution.
pub struct VM<'a, F, B: BlackBoxFunctionSolver<F>> {
    /// Calldata to the brillig function.
    calldata: Vec<F>,
    /// Instruction pointer.
    program_counter: usize,
    /// A counter maintained throughout a Brillig process that determines
    /// whether the caller has resolved the results of a [foreign call][Opcode::ForeignCall].
    ///
    /// Incremented when the results of a foreign call have been processed and the output
    /// values were written to memory.
    ///
    /// * When the counter is less than the length of the results, it indicates that we have
    ///   unprocessed responses returned from the external foreign call handler.
    foreign_call_counter: usize,
    /// Accumulates the outputs of all foreign calls during a Brillig process.
    /// The list is appended onto by the caller upon reaching a [VMStatus::ForeignCallWait].
    foreign_call_results: Vec<ForeignCallResult<F>>,
    /// Executable opcodes.
    bytecode: &'a [Opcode<F>],
    /// Status of the VM.
    status: VMStatus<F>,
    /// Memory of the VM.
    memory: Memory<F>,
    /// Call stack.
    call_stack: Vec<usize>,
    /// The solver for blackbox functions.
    black_box_solver: &'a B,
    // Flag that determines whether we want to profile VM.
    profiling_active: bool,
    // Samples for profiling the VM execution.
    profiling_samples: BrilligProfilingSamples,

    /// Fuzzing trace structure.
    /// If the field is `None` then fuzzing is inactive.
    fuzzing_trace: Option<FuzzingTrace>,
}

impl<'a, F: AcirField, B: BlackBoxFunctionSolver<F>> VM<'a, F, B> {
    /// Constructs a new VM instance.
    pub fn new(
        calldata: Vec<F>,
        bytecode: &'a [Opcode<F>],
        black_box_solver: &'a B,
        profiling_active: bool,
        with_branch_to_feature_map: Option<&BranchToFeatureMap>,
    ) -> Self {
        let fuzzing_trace = with_branch_to_feature_map.cloned().map(FuzzingTrace::new);

        Self {
            calldata,
            program_counter: 0,
            foreign_call_counter: 0,
            foreign_call_results: Vec::new(),
            bytecode,
            status: VMStatus::InProgress,
            memory: Memory::default(),
            call_stack: Vec::new(),
            black_box_solver,
            profiling_active,
            profiling_samples: Vec::with_capacity(bytecode.len()),
            fuzzing_trace,
        }
    }

    pub fn is_profiling_active(&self) -> bool {
        self.profiling_active
    }

    pub fn is_fuzzing_active(&self) -> bool {
        self.fuzzing_trace.is_some()
    }

    pub fn take_profiling_samples(&mut self) -> BrilligProfilingSamples {
        std::mem::take(&mut self.profiling_samples)
    }

    /// Updates the current status of the VM.
    /// Returns the given status.
    fn status(&mut self, status: VMStatus<F>) -> &VMStatus<F> {
        self.status = status.clone();
        &self.status
    }

    pub fn get_status(&self) -> VMStatus<F> {
        self.status.clone()
    }

    /// Sets the current status of the VM to Finished (completed execution).
    fn finish(&mut self, return_data_offset: usize, return_data_size: usize) -> &VMStatus<F> {
        self.status(VMStatus::Finished { return_data_offset, return_data_size })
    }

    /// Check whether the latest foreign call result is available yet.
    fn has_unprocessed_foreign_call_result(&self) -> bool {
        self.foreign_call_counter < self.foreign_call_results.len()
    }

    /// Provide the results of a Foreign Call to the VM
    /// and resume execution of the VM.
    pub fn resolve_foreign_call(&mut self, foreign_call_result: ForeignCallResult<F>) {
        if self.has_unprocessed_foreign_call_result() {
            panic!("No unresolved foreign calls; the previous results haven't been processed yet");
        }
        self.foreign_call_results.push(foreign_call_result);
        self.status(VMStatus::InProgress);
    }

    /// Sets the current status of the VM to `Failure`,
    /// indicating that the VM encountered a `Trap` Opcode.
    fn trap(&mut self, revert_data_offset: usize, revert_data_size: usize) -> &VMStatus<F> {
        self.status(VMStatus::Failure {
            call_stack: self.get_call_stack(),
            reason: FailureReason::Trap { revert_data_offset, revert_data_size },
        })
    }

    /// Sets the current status of the VM to `Failure`,
    /// indicating that the VM encountered an invalid state.
    fn fail(&mut self, message: String) -> &VMStatus<F> {
        self.status(VMStatus::Failure {
            call_stack: self.get_call_stack(),
            reason: FailureReason::RuntimeError { message },
        })
    }

    /// Process opcodes in a loop until a status of `Finished`,
    /// `Failure` or `ForeignCallWait` is encountered.
    pub fn process_opcodes(&mut self) -> VMStatus<F> {
        while !matches!(
            self.process_opcode(),
            VMStatus::Finished { .. } | VMStatus::Failure { .. } | VMStatus::ForeignCallWait { .. }
        ) {}
        self.status.clone()
    }

    /// Read memory slots.
    ///
    /// Used by the debugger to inspect the contents of the memory.
    pub fn get_memory(&self) -> &[MemoryValue<F>] {
        self.memory.values()
    }

    /// Take all the contents of the memory, leaving it empty.
    ///
    /// Used only for testing purposes.
    pub fn take_memory(mut self) -> Memory<F> {
        std::mem::take(&mut self.memory)
    }

    pub fn foreign_call_counter(&self) -> usize {
        self.foreign_call_counter
    }

    /// Write a numeric value to direct memory slot.
    ///
    /// Used by the debugger to alter memory.
    pub fn write_memory_at(&mut self, ptr: usize, value: MemoryValue<F>) {
        self.memory.write(MemoryAddress::direct(ptr), value);
    }

    /// Returns the VM's current call stack, including the actual program
    /// counter in the last position of the returned vector.
    pub fn get_call_stack(&self) -> Vec<usize> {
        let mut call_stack = self.get_call_stack_no_current_counter();
        call_stack.push(self.program_counter);
        call_stack
    }

    /// Returns the VM's call stack, but unlike [Self::get_call_stack] without the attaching
    /// the program counter in the last position of the returned vector.
    /// This is meant only for fetching the call stack after execution has completed.
    pub fn get_call_stack_no_current_counter(&self) -> Vec<usize> {
        self.call_stack.clone()
    }

    /// Process a single opcode and modify the program counter.
    pub fn process_opcode(&mut self) -> &VMStatus<F> {
        if self.profiling_active {
            let call_stack: Vec<usize> = self.get_call_stack();
            self.profiling_samples.push(BrilligProfilingSample { call_stack });
        }

        self.process_opcode_internal()
    }

    pub fn get_fuzzing_trace(&self) -> Vec<u32> {
        self.fuzzing_trace.as_ref().map(|trace| trace.get_trace()).unwrap_or_default()
    }

    /// Execute a single opcode:
    /// 1. Retrieve the current opcode using the program counter
    /// 2. Execute the opcode.
    ///    - For instance a binary 'result = lhs+rhs' opcode will read the VM memory at the 'lhs' and 'rhs' addresses,
    ///      compute the sum and write it to the 'result' memory address.
    /// 3. Update the program counter, usually by incrementing it.
    ///
    /// - Control flow opcodes jump around the bytecode by setting the program counter.
    /// - Foreign call opcodes pause the VM until the foreign call results are available.
    /// - Function call opcodes backup the current program counter into the call stack and jump to the function entry point.
    ///   The stack frame for function calls is handled during codegen.
    fn process_opcode_internal(&mut self) -> &VMStatus<F> {
        let opcode = &self.bytecode[self.program_counter];
        match opcode {
            Opcode::BinaryFieldOp { op, lhs, rhs, destination: result } => {
                if let Err(error) = self.process_binary_field_op(*op, *lhs, *rhs, *result) {
                    self.fail(error.to_string())
                } else {
                    self.increment_program_counter()
                }
            }
            Opcode::BinaryIntOp { op, bit_size, lhs, rhs, destination: result } => {
                if let Err(error) = self.process_binary_int_op(*op, *bit_size, *lhs, *rhs, *result)
                {
                    self.fail(error.to_string())
                } else {
                    self.increment_program_counter()
                }
            }
            Opcode::Not { destination, source, bit_size } => {
                if let Err(error) = self.process_not(*source, *destination, *bit_size) {
                    self.fail(error.to_string())
                } else {
                    self.increment_program_counter()
                }
            }
            Opcode::Cast { destination, source, bit_size } => {
                let source_value = self.memory.read(*source);
                let casted_value = cast::cast(source_value, *bit_size);
                self.memory.write(*destination, casted_value);
                self.increment_program_counter()
            }
            Opcode::Jump { location: destination } => self.set_program_counter(*destination),
            Opcode::JumpIf { condition, location: destination } => {
                // Check if condition is true
                // We use 0 to mean false and any other value to mean true
                let condition_value = self.memory.read(*condition);
                let condition_value = match condition_value.expect_u1() {
                    Err(error) => {
                        return self.fail(format!("condition value is not a boolean: {error}"));
                    }
                    Ok(cond) => cond,
                };
                if condition_value {
                    self.fuzzing_trace_branching(*destination);
                    self.set_program_counter(*destination)
                } else {
                    self.fuzzing_trace_branching(self.program_counter + 1);
                    self.increment_program_counter()
                }
            }
            Opcode::CalldataCopy { destination_address, size_address, offset_address } => {
                let size = self.memory.read(*size_address).to_usize();
                let offset = self.memory.read(*offset_address).to_usize();
                let values: Vec<_> = self.calldata[offset..(offset + size)]
                    .iter()
                    .map(|value| MemoryValue::new_field(*value))
                    .collect();
                self.memory.write_slice(*destination_address, &values);
                self.increment_program_counter()
            }
            Opcode::Return => {
                if let Some(return_location) = self.call_stack.pop() {
                    self.set_program_counter(return_location + 1)
                } else {
                    self.fail("return opcode hit, but callstack already empty".to_string())
                }
            }
            Opcode::ForeignCall {
                function,
                destinations,
                destination_value_types,
                inputs,
                input_value_types,
            } => self.process_foreign_call(
                function,
                destinations,
                destination_value_types,
                inputs,
                input_value_types,
            ),
            Opcode::Mov { destination: destination_address, source: source_address } => {
                let source_value = self.memory.read(*source_address);
                self.memory.write(*destination_address, source_value);
                self.increment_program_counter()
            }
            Opcode::ConditionalMov { destination, source_a, source_b, condition } => {
                let condition_value = self.memory.read(*condition);

                let condition_value = match condition_value.expect_u1() {
                    Err(error) => {
                        return self.fail(format!("condition value is not a boolean: {error}"));
                    }
                    Ok(cond) => cond,
                };
                if condition_value {
                    self.memory.write(*destination, self.memory.read(*source_a));
                } else {
                    self.memory.write(*destination, self.memory.read(*source_b));
                }
                self.fuzzing_trace_conditional_mov(condition_value);
                self.increment_program_counter()
            }
            Opcode::Trap { revert_data } => {
                let revert_data_size = self.memory.read(revert_data.size).to_usize();
                if revert_data_size > 0 {
                    self.trap(
                        self.memory.read_ref(revert_data.pointer).unwrap_direct(),
                        revert_data_size,
                    )
                } else {
                    self.trap(0, 0)
                }
            }
            Opcode::Stop { return_data } => {
                let return_data_size = self.memory.read(return_data.size).to_usize();
                if return_data_size > 0 {
                    self.finish(
                        self.memory.read_ref(return_data.pointer).unwrap_direct(),
                        return_data_size,
                    )
                } else {
                    self.finish(0, 0)
                }
            }
            Opcode::Load { destination, source_pointer } => {
                // Convert the source_pointer to an address
                let source = self.memory.read_ref(*source_pointer);
                // Use the source address to lookup the value in memory
                let value = self.memory.read(source);
                self.memory.write(*destination, value);
                self.increment_program_counter()
            }
            Opcode::Store { destination_pointer, source: source_address } => {
                // Convert the destination_pointer to an address
                let destination = self.memory.read_ref(*destination_pointer);
                // Read the value at the source address
                let value = self.memory.read(*source_address);
                // Use the destination address to set the value in memory
                self.memory.write(destination, value);
                self.increment_program_counter()
            }
            Opcode::Call { location } => {
                // Push the return location to the call stack.
                self.call_stack.push(self.program_counter);
                self.set_program_counter(*location)
            }
            Opcode::Const { destination, value, bit_size } => {
                // Consts are not checked in runtime to fit in the bit size, since they can safely be checked statically.
                self.memory.write(*destination, MemoryValue::new_from_field(*value, *bit_size));
                self.increment_program_counter()
            }
            Opcode::IndirectConst { destination_pointer, bit_size, value } => {
                // Convert the destination_pointer to an address
                let destination = self.memory.read_ref(*destination_pointer);
                // Use the destination address to set the value in memory
                self.memory.write(destination, MemoryValue::new_from_field(*value, *bit_size));
                self.increment_program_counter()
            }
            Opcode::BlackBox(black_box_op) => {
                if let Err(e) =
                    evaluate_black_box(black_box_op, self.black_box_solver, &mut self.memory)
                {
                    self.fail(e.to_string())
                } else {
                    self.increment_program_counter()
                }
            }
        }
    }

    /// Returns the current value of the program counter.
    pub fn program_counter(&self) -> usize {
        self.program_counter
    }

    /// Increments the program counter by 1.
    fn increment_program_counter(&mut self) -> &VMStatus<F> {
        self.set_program_counter(self.program_counter + 1)
    }

    /// Sets the program counter to `value`.
    /// If the program counter no longer points to an opcode
    /// in the bytecode, then the VMStatus reports `Finished`.
    fn set_program_counter(&mut self, value: usize) -> &VMStatus<F> {
        assert!(self.program_counter < self.bytecode.len());
        self.program_counter = value;
        if self.program_counter >= self.bytecode.len() {
            self.status = VMStatus::Finished { return_data_offset: 0, return_data_size: 0 };
        }
        &self.status
    }

    /// Process a binary field operation.
    /// This method will not modify the program counter.
    fn process_binary_field_op(
        &mut self,
        op: BinaryFieldOp,
        lhs: MemoryAddress,
        rhs: MemoryAddress,
        result: MemoryAddress,
    ) -> Result<(), BrilligArithmeticError> {
        let lhs_value = self.memory.read(lhs);
        let rhs_value = self.memory.read(rhs);

        let result_value = evaluate_binary_field_op(&op, lhs_value, rhs_value)?;
        self.memory.write(result, result_value);
        self.fuzzing_trace_binary_field_op_comparison(&op, lhs_value, rhs_value, result_value);
        Ok(())
    }

    /// Process a binary integer operation.
    /// This method will not modify the program counter.
    fn process_binary_int_op(
        &mut self,
        op: BinaryIntOp,
        bit_size: IntegerBitSize,
        lhs: MemoryAddress,
        rhs: MemoryAddress,
        result: MemoryAddress,
    ) -> Result<(), BrilligArithmeticError> {
        let lhs_value = self.memory.read(lhs);
        let rhs_value = self.memory.read(rhs);

        let result_value = evaluate_binary_int_op(&op, lhs_value, rhs_value, bit_size)?;
        self.memory.write(result, result_value);
        self.fuzzing_trace_binary_int_op_comparison(&op, lhs_value, rhs_value, result_value);
        Ok(())
    }

    /// Process a unary negation operation.
    ///
    /// It returns `MemoryTypeError` if the value type does not match the type
    /// indicated by `op_bit_size`.
    fn process_not(
        &mut self,
        source: MemoryAddress,
        destination: MemoryAddress,
        op_bit_size: IntegerBitSize,
    ) -> Result<(), MemoryTypeError> {
        let value = self.memory.read(source);

        let negated_value = match op_bit_size {
            IntegerBitSize::U1 => MemoryValue::U1(!value.expect_u1()?),
            IntegerBitSize::U8 => MemoryValue::U8(!value.expect_u8()?),
            IntegerBitSize::U16 => MemoryValue::U16(!value.expect_u16()?),
            IntegerBitSize::U32 => MemoryValue::U32(!value.expect_u32()?),
            IntegerBitSize::U64 => MemoryValue::U64(!value.expect_u64()?),
            IntegerBitSize::U128 => MemoryValue::U128(!value.expect_u128()?),
        };
        self.memory.write(destination, negated_value);
        Ok(())
    }
}