brillig_vm/
memory.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//! Implementation of the VM's memory
use acir::{
    AcirField,
    brillig::{BitSize, IntegerBitSize, MemoryAddress},
};

/// The bit size used for addressing memory within the Brillig VM.
///
/// All memory pointers are interpreted as `u32` values, meaning the VM can directly address up to 2^32 memory slots.
pub const MEMORY_ADDRESSING_BIT_SIZE: IntegerBitSize = IntegerBitSize::U32;

/// A single typed value in the Brillig VM's memory.
///
/// Memory in the VM is strongly typed and can represent either a native field element
/// or an integer of a specific bit width. This enum encapsulates all supported
/// in-memory types and allows conversion between representations.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum MemoryValue<F> {
    Field(F),
    U1(bool),
    U8(u8),
    U16(u16),
    U32(u32),
    U64(u64),
    U128(u128),
}

/// Represents errors that can occur when interpreting or converting typed memory values.
#[derive(Debug, thiserror::Error)]
pub enum MemoryTypeError {
    /// The value's bit size does not match the expected bit size for the operation.
    #[error(
        "Bit size for value {value_bit_size} does not match the expected bit size {expected_bit_size}"
    )]
    MismatchedBitSize { value_bit_size: u32, expected_bit_size: u32 },
    /// The memory value is not an integer and cannot be interpreted as one.
    /// For example, this can be triggered when attempting to convert a field element to an integer such as in [MemoryValue::to_u128].
    #[error("Value is not an integer")]
    NotAnInteger,
}

impl<F: std::fmt::Display> MemoryValue<F> {
    /// Builds a field-typed memory value.
    pub fn new_field(value: F) -> Self {
        MemoryValue::Field(value)
    }

    /// Builds an integer-typed memory value.
    pub fn new_integer(value: u128, bit_size: IntegerBitSize) -> Self {
        match bit_size {
            IntegerBitSize::U1 => MemoryValue::U1(value != 0),
            IntegerBitSize::U8 => MemoryValue::U8(value as u8),
            IntegerBitSize::U16 => MemoryValue::U16(value as u16),
            IntegerBitSize::U32 => MemoryValue::U32(value as u32),
            IntegerBitSize::U64 => MemoryValue::U64(value as u64),
            IntegerBitSize::U128 => MemoryValue::U128(value),
        }
    }

    pub fn bit_size(&self) -> BitSize {
        match self {
            MemoryValue::Field(_) => BitSize::Field,
            MemoryValue::U1(_) => BitSize::Integer(IntegerBitSize::U1),
            MemoryValue::U8(_) => BitSize::Integer(IntegerBitSize::U8),
            MemoryValue::U16(_) => BitSize::Integer(IntegerBitSize::U16),
            MemoryValue::U32(_) => BitSize::Integer(IntegerBitSize::U32),
            MemoryValue::U64(_) => BitSize::Integer(IntegerBitSize::U64),
            MemoryValue::U128(_) => BitSize::Integer(IntegerBitSize::U128),
        }
    }

    pub fn to_usize(&self) -> usize {
        match self {
            MemoryValue::U32(value) => (*value).try_into().unwrap(),
            other => panic!("value is not typed as brillig usize: {other}"),
        }
    }
}

impl<F: AcirField> MemoryValue<F> {
    /// Builds a memory value from a field element.
    pub fn new_from_field(value: F, bit_size: BitSize) -> Self {
        if let BitSize::Integer(bit_size) = bit_size {
            MemoryValue::new_integer(value.to_u128(), bit_size)
        } else {
            MemoryValue::new_field(value)
        }
    }

    /// Builds a memory value from a field element, checking that the value is within the bit size.
    pub fn new_checked(value: F, bit_size: BitSize) -> Option<Self> {
        if let BitSize::Integer(bit_size) = bit_size {
            if value.num_bits() > bit_size.into() {
                return None;
            }
        }

        Some(MemoryValue::new_from_field(value, bit_size))
    }

    /// Converts the memory value to a field element, independent of its type.
    pub fn to_field(&self) -> F {
        match self {
            MemoryValue::Field(value) => *value,
            MemoryValue::U1(value) => F::from(*value),
            MemoryValue::U8(value) => F::from(*value as u128),
            MemoryValue::U16(value) => F::from(*value as u128),
            MemoryValue::U32(value) => F::from(*value as u128),
            MemoryValue::U64(value) => F::from(*value as u128),
            MemoryValue::U128(value) => F::from(*value),
        }
    }

    /// Converts the memory value to U128, if the value is an integer.
    pub fn to_u128(&self) -> Result<u128, MemoryTypeError> {
        match self {
            MemoryValue::Field(..) => Err(MemoryTypeError::NotAnInteger),
            MemoryValue::U1(value) => Ok(*value as u8 as u128),
            MemoryValue::U8(value) => Ok(*value as u128),
            MemoryValue::U16(value) => Ok(*value as u128),
            MemoryValue::U32(value) => Ok(*value as u128),
            MemoryValue::U64(value) => Ok(*value as u128),
            MemoryValue::U128(value) => Ok(*value),
        }
    }

    /// Extracts the field element from the memory value, if it is typed as field element.
    pub fn expect_field(self) -> Result<F, MemoryTypeError> {
        if let MemoryValue::Field(field) = self {
            Ok(field)
        } else {
            Err(MemoryTypeError::MismatchedBitSize {
                value_bit_size: self.bit_size().to_u32::<F>(),
                expected_bit_size: F::max_num_bits(),
            })
        }
    }
    pub(crate) fn expect_u1(self) -> Result<bool, MemoryTypeError> {
        if let MemoryValue::U1(value) = self {
            Ok(value)
        } else {
            Err(MemoryTypeError::MismatchedBitSize {
                value_bit_size: self.bit_size().to_u32::<F>(),
                expected_bit_size: 1,
            })
        }
    }

    pub(crate) fn expect_u8(self) -> Result<u8, MemoryTypeError> {
        if let MemoryValue::U8(value) = self {
            Ok(value)
        } else {
            Err(MemoryTypeError::MismatchedBitSize {
                value_bit_size: self.bit_size().to_u32::<F>(),
                expected_bit_size: 8,
            })
        }
    }

    pub(crate) fn expect_u16(self) -> Result<u16, MemoryTypeError> {
        if let MemoryValue::U16(value) = self {
            Ok(value)
        } else {
            Err(MemoryTypeError::MismatchedBitSize {
                value_bit_size: self.bit_size().to_u32::<F>(),
                expected_bit_size: 16,
            })
        }
    }

    pub(crate) fn expect_u32(self) -> Result<u32, MemoryTypeError> {
        if let MemoryValue::U32(value) = self {
            Ok(value)
        } else {
            Err(MemoryTypeError::MismatchedBitSize {
                value_bit_size: self.bit_size().to_u32::<F>(),
                expected_bit_size: 32,
            })
        }
    }

    pub(crate) fn expect_u64(self) -> Result<u64, MemoryTypeError> {
        if let MemoryValue::U64(value) = self {
            Ok(value)
        } else {
            Err(MemoryTypeError::MismatchedBitSize {
                value_bit_size: self.bit_size().to_u32::<F>(),
                expected_bit_size: 64,
            })
        }
    }

    pub(crate) fn expect_u128(self) -> Result<u128, MemoryTypeError> {
        if let MemoryValue::U128(value) = self {
            Ok(value)
        } else {
            Err(MemoryTypeError::MismatchedBitSize {
                value_bit_size: self.bit_size().to_u32::<F>(),
                expected_bit_size: 128,
            })
        }
    }
}

impl<F: std::fmt::Display> std::fmt::Display for MemoryValue<F> {
    fn fmt(&self, f: &mut ::std::fmt::Formatter) -> Result<(), ::std::fmt::Error> {
        match self {
            MemoryValue::Field(value) => write!(f, "{value}: field"),
            MemoryValue::U1(value) => write!(f, "{value}: u1"),
            MemoryValue::U8(value) => write!(f, "{value}: u8"),
            MemoryValue::U16(value) => write!(f, "{value}: u16"),
            MemoryValue::U32(value) => write!(f, "{value}: u32"),
            MemoryValue::U64(value) => write!(f, "{value}: u64"),
            MemoryValue::U128(value) => write!(f, "{value}: u128"),
        }
    }
}

impl<F: AcirField> Default for MemoryValue<F> {
    fn default() -> Self {
        MemoryValue::new_field(F::zero())
    }
}

impl<F: AcirField> From<bool> for MemoryValue<F> {
    fn from(value: bool) -> Self {
        MemoryValue::U1(value)
    }
}

impl<F: AcirField> From<u8> for MemoryValue<F> {
    fn from(value: u8) -> Self {
        MemoryValue::U8(value)
    }
}

impl<F: AcirField> From<usize> for MemoryValue<F> {
    fn from(value: usize) -> Self {
        MemoryValue::U32(value as u32)
    }
}

impl<F: AcirField> From<u32> for MemoryValue<F> {
    fn from(value: u32) -> Self {
        MemoryValue::U32(value)
    }
}

impl<F: AcirField> From<u64> for MemoryValue<F> {
    fn from(value: u64) -> Self {
        MemoryValue::U64(value)
    }
}

impl<F: AcirField> From<u128> for MemoryValue<F> {
    fn from(value: u128) -> Self {
        MemoryValue::U128(value)
    }
}

impl<F: AcirField> TryFrom<MemoryValue<F>> for bool {
    type Error = MemoryTypeError;

    fn try_from(memory_value: MemoryValue<F>) -> Result<Self, Self::Error> {
        memory_value.expect_u1()
    }
}

impl<F: AcirField> TryFrom<MemoryValue<F>> for u8 {
    type Error = MemoryTypeError;

    fn try_from(memory_value: MemoryValue<F>) -> Result<Self, Self::Error> {
        memory_value.expect_u8()
    }
}

impl<F: AcirField> TryFrom<MemoryValue<F>> for u32 {
    type Error = MemoryTypeError;

    fn try_from(memory_value: MemoryValue<F>) -> Result<Self, Self::Error> {
        memory_value.expect_u32()
    }
}

impl<F: AcirField> TryFrom<MemoryValue<F>> for u64 {
    type Error = MemoryTypeError;

    fn try_from(memory_value: MemoryValue<F>) -> Result<Self, Self::Error> {
        memory_value.expect_u64()
    }
}

impl<F: AcirField> TryFrom<MemoryValue<F>> for u128 {
    type Error = MemoryTypeError;

    fn try_from(memory_value: MemoryValue<F>) -> Result<Self, Self::Error> {
        memory_value.expect_u128()
    }
}
/// The VM's memory.
/// Memory is internally represented as a vector of values.
/// We grow the memory when values past the end are set, extending with 0s.
#[derive(Debug, Clone, Default, PartialEq, Eq)]
pub struct Memory<F> {
    // Internal memory representation
    inner: Vec<MemoryValue<F>>,
}

impl<F: AcirField> Memory<F> {
    fn get_stack_pointer(&self) -> usize {
        self.read(MemoryAddress::Direct(0)).to_usize()
    }

    fn resolve(&self, address: MemoryAddress) -> usize {
        match address {
            MemoryAddress::Direct(address) => address,
            MemoryAddress::Relative(offset) => self.get_stack_pointer() + offset,
        }
    }

    /// Gets the value at address
    pub fn read(&self, address: MemoryAddress) -> MemoryValue<F> {
        let resolved_addr = self.resolve(address);
        self.inner.get(resolved_addr).copied().unwrap_or_default()
    }

    pub fn read_ref(&self, ptr: MemoryAddress) -> MemoryAddress {
        MemoryAddress::direct(self.read(ptr).to_usize())
    }

    pub fn read_slice(&self, addr: MemoryAddress, len: usize) -> &[MemoryValue<F>] {
        // Allows to read a slice of uninitialized memory if the length is zero.
        // Ideally we'd be able to read uninitialized memory in general (as read does)
        // but that's not possible if we want to return a slice instead of owned data.
        if len == 0 {
            return &[];
        }
        let resolved_addr = self.resolve(addr);
        &self.inner[resolved_addr..(resolved_addr + len)]
    }

    /// Sets the value at `address` to `value`
    pub fn write(&mut self, address: MemoryAddress, value: MemoryValue<F>) {
        let resolved_ptr = self.resolve(address);
        self.resize_to_fit(resolved_ptr + 1);
        self.inner[resolved_ptr] = value;
    }

    fn resize_to_fit(&mut self, size: usize) {
        // Calculate new memory size
        let new_size = std::cmp::max(self.inner.len(), size);
        // Expand memory to new size with default values if needed
        self.inner.resize(new_size, MemoryValue::default());
    }

    /// Sets the values after `address` to `values`
    pub fn write_slice(&mut self, address: MemoryAddress, values: &[MemoryValue<F>]) {
        let resolved_address = self.resolve(address);
        self.resize_to_fit(resolved_address + values.len());
        self.inner[resolved_address..(resolved_address + values.len())].copy_from_slice(values);
    }

    /// Returns the values of the memory
    pub fn values(&self) -> &[MemoryValue<F>] {
        &self.inner
    }
}