acir::circuit::opcodes

Enum Opcode

Source
pub enum Opcode<F: AcirField> {
    AssertZero(Expression<F>),
    BlackBoxFuncCall(BlackBoxFuncCall<F>),
    MemoryOp {
        block_id: BlockId,
        op: MemOp<F>,
        predicate: Option<Expression<F>>,
    },
    MemoryInit {
        block_id: BlockId,
        init: Vec<Witness>,
        block_type: BlockType,
    },
    BrilligCall {
        id: BrilligFunctionId,
        inputs: Vec<BrilligInputs<F>>,
        outputs: Vec<BrilligOutputs>,
        predicate: Option<Expression<F>>,
    },
    Call {
        id: AcirFunctionId,
        inputs: Vec<Witness>,
        outputs: Vec<Witness>,
        predicate: Option<Expression<F>>,
    },
}
Expand description

Defines an operation within an ACIR circuit

Expects a type parameter F which implements AcirField.

Variants§

§

AssertZero(Expression<F>)

An AssertZero opcode adds the constraint that P(w) = 0, where w=(w_1,..w_n) is a tuple of n witnesses, and P is a multi-variate polynomial of total degree at most 2.

The coefficients {q_M}_{i,j}, q_i,q_c of the polynomial are known values which define the opcode.

A general expression of assert-zero opcode is the following:

\sum_{i,j} {q_M}_{i,j}w_iw_j + \sum_i q_iw_i +q_c = 0

An assert-zero opcode can be used to:

  • express a constraint on witnesses; for instance to express that a witness w is a boolean, you can add the opcode: w*w-w=0
  • or, to compute the value of an arithmetic operation of some inputs.

For instance, to multiply two witnesses x and y, you would use the opcode z-x*y=0, which would constrain z to be x*y.

The solver expects that at most one witness is not known when executing the opcode.

§

BlackBoxFuncCall(BlackBoxFuncCall<F>)

Calls to “gadgets” which rely on backends implementing support for specialized constraints.

Often used for exposing more efficient implementations of SNARK-unfriendly computations.

All black box function inputs are specified as FunctionInput, and they have one or several witnesses as output.

Some more advanced computations assume that the proving system has an ‘embedded curve’. It is a curve that cycles with the main curve of the proving system, i.e the scalar field of the embedded curve is the base field of the main one, and vice-versa. e.g. Aztec’s Barretenberg uses BN254 as the main curve and Grumpkin as the embedded curve.

§

MemoryOp

Atomic operation on a block of memory

ACIR is able to address any array of witnesses. Each array is assigned an id (BlockId) and needs to be initialized with the Opcode::MemoryInit opcode. Then it is possible to read and write from/to an array by providing the index and the value we read/write as arithmetic expressions. Note that ACIR arrays all have a known fixed length (given in the Opcode::MemoryInit opcode below)

Fields

§block_id: BlockId

Identifier of the array

§op: MemOp<F>

Describe the memory operation to perform

§predicate: Option<Expression<F>>

Predicate of the memory operation - indicates if it should be skipped Disables the execution of the opcode when the expression evaluates to zero

§

MemoryInit

Initialize an ACIR array from a vector of witnesses.

There must be only one MemoryInit per block_id, and MemoryOp opcodes must come after the MemoryInit.

Fields

§block_id: BlockId

Identifier of the array

§init: Vec<Witness>

Vector of witnesses specifying the initial value of the array

§block_type: BlockType

Specify what type of memory we should initialize

§

BrilligCall

Calls to unconstrained functions. Unconstrained functions are constructed with Brillig.

Fields

§id: BrilligFunctionId

Id for the function being called. It is the responsibility of the executor to fetch the appropriate Brillig bytecode from this id.

§inputs: Vec<BrilligInputs<F>>

Inputs to the function call

§outputs: Vec<BrilligOutputs>

Outputs to the function call

§predicate: Option<Expression<F>>

Predicate of the Brillig execution - indicates if it should be skipped

§

Call

Calls to functions represented as a separate circuit. A call opcode allows us to build a call stack when executing the outer-most circuit.

Fields

§id: AcirFunctionId

Id for the function being called. It is the responsibility of the executor to fetch the appropriate circuit from this id.

§inputs: Vec<Witness>

Inputs to the function call

§outputs: Vec<Witness>

Outputs of the function call

§predicate: Option<Expression<F>>

Predicate of the circuit execution - indicates if it should be skipped

Trait Implementations§

Source§

impl<F: Clone + AcirField> Clone for Opcode<F>

Source§

fn clone(&self) -> Opcode<F>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<F: AcirField> Debug for Opcode<F>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'de, F> Deserialize<'de> for Opcode<F>
where F: Deserialize<'de> + AcirField,

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<F: AcirField> Display for Opcode<F>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<F: Hash + AcirField> Hash for Opcode<F>

Source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<F: PartialEq + AcirField> PartialEq for Opcode<F>

Source§

fn eq(&self, other: &Opcode<F>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<F> ProtoCodec<Opcode<F>, Opcode> for ProtoSchema<F>
where F: AcirField,

Source§

fn encode(value: &Opcode<F>) -> Opcode

Convert domain type T to protobuf representation R.
Source§

fn decode(value: &Opcode) -> Result<Opcode<F>>

Try to convert protobuf representation R to domain type T.
Source§

fn encode_some(value: &T) -> Option<R>

Encode a field as Some.
Source§

fn encode_vec<'a, I>(values: I) -> Vec<R>
where I: IntoIterator<Item = &'a T>, T: 'a,

Encode multiple values as a vector.
Source§

fn decode_wrap(value: &R, msg: &'static str) -> Result<T, Report>

Decode a field and attach the name of the field if it fails.
Source§

fn decode_vec(values: &[R]) -> Result<Vec<T>, Report>

Decode multiple values into a vector.
Source§

fn decode_vec_wrap(values: &[R], msg: &'static str) -> Result<Vec<T>, Report>

Decode multiple values into a vector, attaching a field name to any errors.
Source§

fn decode_arr<const N: usize>(values: &[R]) -> Result<[T; N], Report>

Decode a fixed size array.
Source§

fn decode_arr_wrap<const N: usize>( values: &[R], msg: &'static str, ) -> Result<[T; N], Report>

Decode a fixed size array, attaching a field name to any errors
Source§

fn decode_box_arr<const N: usize>(values: &[R]) -> Result<Box<[T; N]>, Report>

Decode a boxed fixed size array.
Source§

fn decode_box_arr_wrap<const N: usize>( values: &[R], msg: &'static str, ) -> Result<Box<[T; N]>, Report>

Decode a boxed fixed size array, attaching a field name to any errors
Source§

fn decode_some(value: &Option<R>) -> Result<T, Report>

Decode an optional field as a required one; fails if it’s None.
Source§

fn decode_some_wrap(value: &Option<R>, msg: &'static str) -> Result<T, Report>

Decode an optional field as a required one, attaching a field name to any errors. Returns error if the field is missing.
Source§

fn decode_opt_wrap( value: &Option<R>, msg: &'static str, ) -> Result<Option<T>, Report>

Decode an optional field, attaching a field name to any errors. Return None if the field is missing.
Source§

fn serialize_to_vec(value: &T) -> Vec<u8>
where R: Message,

Encode a domain type to protobuf and serialize it to bytes.
Source§

fn deserialize_from_slice(buf: &[u8]) -> Result<T, Report>
where R: Message + Default,

Deserialize a buffer into protobuf and then decode into the domain type.
Source§

impl<F> Serialize for Opcode<F>
where F: Serialize + AcirField,

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl<F: Eq + AcirField> Eq for Opcode<F>

Source§

impl<F: AcirField> StructuralPartialEq for Opcode<F>

Auto Trait Implementations§

§

impl<F> Freeze for Opcode<F>
where F: Freeze,

§

impl<F> RefUnwindSafe for Opcode<F>
where F: RefUnwindSafe,

§

impl<F> Send for Opcode<F>
where F: Send,

§

impl<F> Sync for Opcode<F>
where F: Sync,

§

impl<F> Unpin for Opcode<F>
where F: Unpin,

§

impl<F> UnwindSafe for Opcode<F>
where F: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<D> OwoColorize for D

§

fn fg<C>(&self) -> FgColorDisplay<'_, C, Self>
where C: Color,

Set the foreground color generically Read more
§

fn bg<C>(&self) -> BgColorDisplay<'_, C, Self>
where C: Color,

Set the background color generically. Read more
§

fn black(&self) -> FgColorDisplay<'_, Black, Self>

Change the foreground color to black
§

fn on_black(&self) -> BgColorDisplay<'_, Black, Self>

Change the background color to black
§

fn red(&self) -> FgColorDisplay<'_, Red, Self>

Change the foreground color to red
§

fn on_red(&self) -> BgColorDisplay<'_, Red, Self>

Change the background color to red
§

fn green(&self) -> FgColorDisplay<'_, Green, Self>

Change the foreground color to green
§

fn on_green(&self) -> BgColorDisplay<'_, Green, Self>

Change the background color to green
§

fn yellow(&self) -> FgColorDisplay<'_, Yellow, Self>

Change the foreground color to yellow
§

fn on_yellow(&self) -> BgColorDisplay<'_, Yellow, Self>

Change the background color to yellow
§

fn blue(&self) -> FgColorDisplay<'_, Blue, Self>

Change the foreground color to blue
§

fn on_blue(&self) -> BgColorDisplay<'_, Blue, Self>

Change the background color to blue
§

fn magenta(&self) -> FgColorDisplay<'_, Magenta, Self>

Change the foreground color to magenta
§

fn on_magenta(&self) -> BgColorDisplay<'_, Magenta, Self>

Change the background color to magenta
§

fn purple(&self) -> FgColorDisplay<'_, Magenta, Self>

Change the foreground color to purple
§

fn on_purple(&self) -> BgColorDisplay<'_, Magenta, Self>

Change the background color to purple
§

fn cyan(&self) -> FgColorDisplay<'_, Cyan, Self>

Change the foreground color to cyan
§

fn on_cyan(&self) -> BgColorDisplay<'_, Cyan, Self>

Change the background color to cyan
§

fn white(&self) -> FgColorDisplay<'_, White, Self>

Change the foreground color to white
§

fn on_white(&self) -> BgColorDisplay<'_, White, Self>

Change the background color to white
§

fn default_color(&self) -> FgColorDisplay<'_, Default, Self>

Change the foreground color to the terminal default
§

fn on_default_color(&self) -> BgColorDisplay<'_, Default, Self>

Change the background color to the terminal default
§

fn bright_black(&self) -> FgColorDisplay<'_, BrightBlack, Self>

Change the foreground color to bright black
§

fn on_bright_black(&self) -> BgColorDisplay<'_, BrightBlack, Self>

Change the background color to bright black
§

fn bright_red(&self) -> FgColorDisplay<'_, BrightRed, Self>

Change the foreground color to bright red
§

fn on_bright_red(&self) -> BgColorDisplay<'_, BrightRed, Self>

Change the background color to bright red
§

fn bright_green(&self) -> FgColorDisplay<'_, BrightGreen, Self>

Change the foreground color to bright green
§

fn on_bright_green(&self) -> BgColorDisplay<'_, BrightGreen, Self>

Change the background color to bright green
§

fn bright_yellow(&self) -> FgColorDisplay<'_, BrightYellow, Self>

Change the foreground color to bright yellow
§

fn on_bright_yellow(&self) -> BgColorDisplay<'_, BrightYellow, Self>

Change the background color to bright yellow
§

fn bright_blue(&self) -> FgColorDisplay<'_, BrightBlue, Self>

Change the foreground color to bright blue
§

fn on_bright_blue(&self) -> BgColorDisplay<'_, BrightBlue, Self>

Change the background color to bright blue
§

fn bright_magenta(&self) -> FgColorDisplay<'_, BrightMagenta, Self>

Change the foreground color to bright magenta
§

fn on_bright_magenta(&self) -> BgColorDisplay<'_, BrightMagenta, Self>

Change the background color to bright magenta
§

fn bright_purple(&self) -> FgColorDisplay<'_, BrightMagenta, Self>

Change the foreground color to bright purple
§

fn on_bright_purple(&self) -> BgColorDisplay<'_, BrightMagenta, Self>

Change the background color to bright purple
§

fn bright_cyan(&self) -> FgColorDisplay<'_, BrightCyan, Self>

Change the foreground color to bright cyan
§

fn on_bright_cyan(&self) -> BgColorDisplay<'_, BrightCyan, Self>

Change the background color to bright cyan
§

fn bright_white(&self) -> FgColorDisplay<'_, BrightWhite, Self>

Change the foreground color to bright white
§

fn on_bright_white(&self) -> BgColorDisplay<'_, BrightWhite, Self>

Change the background color to bright white
§

fn bold(&self) -> BoldDisplay<'_, Self>

Make the text bold
§

fn dimmed(&self) -> DimDisplay<'_, Self>

Make the text dim
§

fn italic(&self) -> ItalicDisplay<'_, Self>

Make the text italicized
§

fn underline(&self) -> UnderlineDisplay<'_, Self>

Make the text underlined
Make the text blink
Make the text blink (but fast!)
§

fn reversed(&self) -> ReversedDisplay<'_, Self>

Swap the foreground and background colors
§

fn hidden(&self) -> HiddenDisplay<'_, Self>

Hide the text
§

fn strikethrough(&self) -> StrikeThroughDisplay<'_, Self>

Cross out the text
§

fn color<Color>(&self, color: Color) -> FgDynColorDisplay<'_, Color, Self>
where Color: DynColor,

Set the foreground color at runtime. Only use if you do not know which color will be used at compile-time. If the color is constant, use either [OwoColorize::fg] or a color-specific method, such as [OwoColorize::green], Read more
§

fn on_color<Color>(&self, color: Color) -> BgDynColorDisplay<'_, Color, Self>
where Color: DynColor,

Set the background color at runtime. Only use if you do not know what color to use at compile-time. If the color is constant, use either [OwoColorize::bg] or a color-specific method, such as [OwoColorize::on_yellow], Read more
§

fn fg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> FgColorDisplay<'_, CustomColor<R, G, B>, Self>

Set the foreground color to a specific RGB value.
§

fn bg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> BgColorDisplay<'_, CustomColor<R, G, B>, Self>

Set the background color to a specific RGB value.
§

fn truecolor(&self, r: u8, g: u8, b: u8) -> FgDynColorDisplay<'_, Rgb, Self>

Sets the foreground color to an RGB value.
§

fn on_truecolor(&self, r: u8, g: u8, b: u8) -> BgDynColorDisplay<'_, Rgb, Self>

Sets the background color to an RGB value.
§

fn style(&self, style: Style) -> Styled<&Self>

Apply a runtime-determined style
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> SectionExt for T
where T: Display + Send + Sync + 'static,

Source§

fn header<C>(self, header: C) -> IndentedSection<C, T>
where C: Display + Send + Sync + 'static,

Add a header to a Section and indent the body Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,